【題目】已知正三棱柱ABC﹣A′B′C′如圖所示,其中G是BC的中點(diǎn),D,E分別在線段AG,A′C上運(yùn)動,使得DE∥平面BCC′B′,CC′=2BC=4.
(1)求二面角A′﹣B′C﹣C′的余弦值;
(2)求線段DE的最小值.
【答案】
(1)解:如圖,
∵ABC﹣A′B′C′為正三棱柱,G是BC的中點(diǎn),
∴AG⊥平面BCC′B′,以GB所在直線為x軸,以過G且垂直于BG的直線為y軸,以GA所在直線為z軸建立空間直角坐標(biāo)系,
則G(0,0,0),A(0,0, ),C(﹣1,0,0),B′(1,4,0),A′(0,4, ),
=(1,4, ), ,
平面B′CC′的一個法向量為 ,
設(shè)平面A′B′C的一個法向量為 ,
由 ,取y=1,得x=﹣2,z= .
∴ ,
∴cos< >= = = .
∴二面角A′﹣B′C﹣C′的余弦值為 ;
(2)設(shè)D(0,0,t)(0≤t≤ ),E(x,y,z),
則 ,∴(x+1,y,z)=(λ,4λ, ),即x=λ﹣1,y=4λ,z= .
∴E(λ﹣1,4λ, ), =(λ﹣1,4λ, ),
由DE∥平面BCC′B′,得 ,得λ= .
∴ = ,
當(dāng)t= 時, 有最小值 ,
∴線段DE的最小值為 .
【解析】(1)由題意畫出圖形,以GB所在直線為x軸,以過G且垂直于BG的直線為y軸,以GA所在直線為z軸建立空間直角坐標(biāo)系,求出平面B′CC′與平面A′B′C的一個法向量,由兩法向量所成角的余弦值求得二面角A′﹣B′C﹣C′的余弦值;(2)設(shè)D(0,0,t)(0≤t≤ ),E(x,y,z),由 ,結(jié)合DE∥平面BCC′B′把λ用含有t的代數(shù)式表示,然后求出 的最小值得答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD與BDEF均為菱形,∠DAB=∠DBF=60°,且FA=FC. (Ⅰ)求證:AC⊥平面BDEF;
(Ⅱ)求證:FC∥平面EAD;
(Ⅲ)求二面角A﹣FC﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,角A,B,C所對邊分別是a、b、c,且cosA= .
(1)求sin2 +cos2A的值;
(2)若a= ,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù) ,為了得到函數(shù)g(x)=sin2x的圖象,則只需將f(x)的圖象( )
A.向右平移 個長度單位
B.向右平移 個長度單位
C.向左平移 個長度單位
D.向左平移 個長度單位
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C1的極坐標(biāo)方程為ρ=6cosθ,曲線C2的極坐標(biāo)方程為θ= (p∈R),曲線C1 , C2相交于A,B兩點(diǎn). (Ⅰ)把曲線C1 , C2的極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程;
(Ⅱ)求弦AB的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)甲、乙兩人每次射擊命中目標(biāo)的概率分別為 ,且各次射擊相互獨(dú)立,若按甲、乙、甲、乙…的次序輪流射擊,直到有一人擊中目標(biāo)就停止射擊,則停止射擊時,甲射擊了兩次的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= sin2x﹣2cos2x﹣1,x∈R.
(Ⅰ)求函數(shù)f(x)的最小正周期和最小值;
(Ⅱ)在△ABC中,A,B,C的對邊分別為a,b,c,已知c= ,f(C)=0,sinB=2sinA,求a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)某種產(chǎn)品的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)成本y(萬元)有如下幾組樣本數(shù)據(jù):
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3.1 | 3.9 | 4.5 |
據(jù)相關(guān)性檢驗(yàn),這組樣本數(shù)據(jù)具有線性相關(guān)關(guān)系,通過線性回歸分析,求得到其回歸直線的斜率為0.8,則當(dāng)該產(chǎn)品的生產(chǎn)成本是6.7萬元時,其相應(yīng)的產(chǎn)量約是( )
A.8
B.8.5
C.9
D.9.5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=m﹣|x﹣2|,m∈R,且f(x+2)≥0的解集為[﹣3,3].
(Ⅰ)解不等式:f(x)+f(x+2)>0;
(Ⅱ)若a,b,c均為正實(shí)數(shù),且滿足a+b+c=m,求證: ≥3.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com