【題目】已知函數(shù)f(x)= sin2x﹣2cos2x﹣1,x∈R.
(Ⅰ)求函數(shù)f(x)的最小正周期和最小值;
(Ⅱ)在△ABC中,A,B,C的對邊分別為a,b,c,已知c= ,f(C)=0,sinB=2sinA,求a,b的值.

【答案】解:(Ⅰ)f(x)= sin2x﹣(cos2x+1)﹣1= sin2x﹣cos2x﹣2=2sin(2x﹣ )﹣2, ∵ω=2,﹣1≤sin(2x﹣ )≤1,
∴f(x)的最小正周期T=π;最小值為﹣4;
(Ⅱ)∵f(C)=2sin(2C﹣ )﹣2=0,
∴sin(2C﹣ )=1,
∵C∈(0,π),∴2C﹣ ∈(﹣ , ),
∴2C﹣ = ,即C=
將sinB=2sinA,利用正弦定理化簡得:b=2a,
由余弦定理得:c2=a2+b2﹣2abcosC=a2+4a2﹣2a2=3a2 ,
把c= 代入得:a=1,b=2
【解析】(Ⅰ)f(x)解析式利用二倍角的余弦函數(shù)公式化簡,整理后利用兩角和與差的正弦函數(shù)公式化為一個角的正弦函數(shù),找出ω的值,代入周期公式求出函數(shù)f(x)的最小正周期,利用正弦函數(shù)的值域確定出f(x)最小值即可;(Ⅱ)由f(C)=0及第一問化簡得到的解析式,求出C的度數(shù),利用正弦定理化簡sinB=2sinA,得到b=2a,利用余弦定理列出關(guān)系式,把c,b=2a,cosC的值代入即可求出a與b的值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】四棱錐P﹣ABCD的三視圖如圖所示,其五個頂點都在同一球面上,若四棱錐P﹣ABCD的側(cè)面積等于4(1+ ),則該外接球的表面積是(
A.4π
B.12π
C.24π
D.36π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在等比數(shù)列{an}中,公比q>1,且滿足a2+a3+a4=28,a3+2是a2與a4的等差中項.
(1)求數(shù)列{an}的通項公式;
(2)若bn=log2an+5 , 且數(shù)列{bn}的前n項的和為Sn , 求數(shù)列{ }的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正三棱柱ABC﹣A′B′C′如圖所示,其中G是BC的中點,D,E分別在線段AG,A′C上運動,使得DE∥平面BCC′B′,CC′=2BC=4.
(1)求二面角A′﹣B′C﹣C′的余弦值;
(2)求線段DE的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若命題p:從有2件正品和2件次品的產(chǎn)品中任選2件得到都是正品的概率為三分之一;命題q:在邊長為4的正方形ABCD內(nèi)任取一點M,則∠AMB>90°的概率為 ,則下列命題是真命題的是(
A.p∧q
B.(p)∧q
C.p∧(q)
D.q

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,圓C的方程為 (θ為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸,建立極坐標系,兩種坐標系中取相同的單位長度,直線l的極坐標方程為ρcosθ+ρsinθ=m(m∈R).
(I)當m=3時,判斷直線l與C的位置關(guān)系;
(Ⅱ)當C上有且只有一點到直線l的距離等于 時,求C上到直線l距離為2 的點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】大學開設甲、乙、丙三門選修課供學生任意選修(也可不選),假設學生是否選修哪門課彼此互不影響.已知某學生只選修甲一門課的概率為0.08,選修甲和乙兩門課的概率為0.12,至少選修一門的概率是0.88.
(1)求該學生選修甲、乙、丙的概率分別是多少?
(2)用ξ表示該學生選修的課程門數(shù)和沒有選修的課程門數(shù)的乘積,求ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在極坐標系中,點P的坐標是(1,0),曲線C的方程為ρ=2 .以極點為坐標原點,極軸為x軸的正半軸建立平面直角坐標系,斜率為﹣1的直線l經(jīng)過點P.
(1)寫出直線l的參數(shù)方程和曲線C的直角坐標方程;
(2)若直線l和曲線C相交于兩點A,B,求|PA|2+|PB|2的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=9x﹣2a3x+3:
(1)若a=1,x∈[0,1]時,求f(x)的值域;
(2)當x∈[﹣1,1]時,求f(x)的最小值h(a);
(3)是否存在實數(shù)m、n,同時滿足下列條件:①n>m>3;②當h(a)的定義域為[m,n]時,其值域為[m2 , n2],若存在,求出m、n的值,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案