【題目】在平面直角坐標系中,已知曲線為參數(shù)),以坐標原點為極點,軸的非負半軸為極軸建立極坐標系,直線的極坐標方程為:.

1)求直線和曲線的直角坐標方程;

2,直線和曲線交于、兩點,求的值.

【答案】1,;(2.

【解析】

1)在曲線的參數(shù)方程中消去參數(shù),可得出曲線的直角坐標方程,將直線的極坐標方程變形為,代入公式可將直線的極坐標方程化為直角坐標方程;

2)寫出直線的參數(shù)方程,設、對應的參數(shù)分別為,將直線的參數(shù)方程與曲線的普通方程聯(lián)立,列出韋達定理,進而可求得的值.

1)由,

所以,曲線的直角坐標方程為.

直線的極坐標方程可變形為,

所以直線的直角坐標方程為;

2)直線的參數(shù)坐標方程為為參數(shù)).

、對應的參數(shù)分別為、,

將直線的參數(shù)方程代入,得,.

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】4名男同學中選出2人,6名女同學中選出3人,并將選出的5人排成一排.

1)共有多少種不同的排法?

2)若選出的2名男同學不相鄰,共有多少種不同的排法?(用數(shù)字表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的右焦點為,點在橢圓上.

)求橢圓的方程;

)點在圓上,且在第一象限,過的切線交橢圓于兩點,問: 的周長是否為定值?若是,求出定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】盒內(nèi)有大小相同的9個球,其中2個紅色球,3個白色球,4個黑色球.規(guī)定取出1個紅色球得1分,取出1個白色球得0分,取出1個黑色球得分,現(xiàn)從盒內(nèi)任取3個球.

(Ⅰ)求取出的3個球中至少有一個紅球的概率;

(Ⅱ)求取出的3個球得分之和恰為1分的概率;

(Ⅲ)設為取出的3個球中白色球的個數(shù),求的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中

(Ⅰ)當時,求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)設,求證:;

(Ⅲ)若對于恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有甲、乙兩個班級進行數(shù)學考試,按照大于或等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計成績后,得到如下的2×2列聯(lián)表.已知從全部210人中隨機抽取1人為優(yōu)秀的概率為.

(1)請完成上面的2×2列聯(lián)表,并判斷若按99%的可靠性要求,能否認為“成績與班級有關”;

(2)從全部210人中有放回地抽取3次,每次抽取1人,記被抽取的3人中的優(yōu)秀人數(shù)為ξ,若每次抽取的結(jié)果是相互獨立的,求ξ的分布列及數(shù)學期望E(ξ).

P(K2k0)

0.05

0.01

k0

3.841

6.635

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市垃圾處理廠的垃圾年處理量(單位:千萬噸)與資金投入量x(單位:千萬元)有如下統(tǒng)計數(shù)據(jù):

2012

2013

2014

2015

2016

資金投入量x(千萬元)

1.5

1.4

1.9

1.6

2.1

垃圾處理量y(千萬噸)

7.4

7.0

9.2

7.9

10.0

1)若從統(tǒng)計的5年中任取2年,求這2年的垃圾處理量至少有一年不低于8.0(千萬噸)的概率;

2)由表中數(shù)據(jù)求得線性回歸方程為,該垃圾處理廠計劃2017年的垃圾處理量不低于9.0千萬噸,現(xiàn)由垃圾處理廠決策部門獲悉2017年的資金投入量約為1.8千萬元,請你預測2017年能否完成垃圾處理任務,若不能,缺口約為多少千萬噸?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校從學生會宣傳部6名成員(其中男生4人,女生2)中,任選3人參加某省舉辦的我看中國改革開放三十年演講比賽活動.

(1)設所選3人中女生人數(shù)為ξ,求ξ的分布列;

(2)求男生甲或女生乙被選中的概率;

(3)男生甲被選中為事件A,女生乙被選中為事件B,求P(B)P(B|A)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

1)當時,求函數(shù)的單調(diào)區(qū)間;

2)若不等式對任意的正實數(shù)都成立,求實數(shù)的最大整數(shù)值.

3)當時,若存在實數(shù),使得,求證.

查看答案和解析>>

同步練習冊答案