(本題滿分14分)設(shè)數(shù)列的前項(xiàng)和為,且滿足(=1,2,3,…).
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列滿足,且,求數(shù)列的通項(xiàng)公式;
(1); (2)。
解析試題分析:(Ⅰ)由題設(shè)知a1=1,an+Sn=2,an+1+Sn+1=2,兩式相減:an+1-an+an+1=0,故有2an+1=an,,n∈N+,由此能求出數(shù)列{an}的通項(xiàng)公式.
(Ⅱ)由bn+1=bn+an(n=1,2,3,…),知bn+1-bn=()n-1,再由累加法能推導(dǎo)出bn="3-2(" )n-1(n=1,2,3,…).
解:(1)當(dāng)時(shí),,則---------------2分
當(dāng)時(shí) ,,
則--------------------------------4分
所以,數(shù)列是以首項(xiàng),公比為的等比數(shù)列,從而----8分
(2)
當(dāng)時(shí),--10分
-----------12分
又滿足,---------14分
考點(diǎn):本試題主要第(Ⅰ)題考查迭代法求數(shù)列通項(xiàng)公式的方法,第(Ⅱ)題考查累加法求數(shù)列通項(xiàng)公式的方法。
點(diǎn)評(píng):解決該試題的關(guān)鍵是能夠利用迭代法表示出通項(xiàng)公式的運(yùn)用,尋找規(guī)律,以及根據(jù)列加法求解數(shù)列的通項(xiàng)公式的問(wèn)題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分13分)
設(shè)數(shù)列為單調(diào)遞增的等差數(shù)列,,且依次成等比數(shù)列.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若,求數(shù)列的前項(xiàng)和;
(Ⅲ)若,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(14分)已知數(shù)列的前n項(xiàng)和為,且滿足,,
(1)設(shè),數(shù)列為等比數(shù)列,求實(shí)數(shù)的值;
(2)設(shè),求數(shù)列的通項(xiàng)公式;
(3)令,求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分16分)
已知數(shù)列前項(xiàng)和.數(shù)列滿足,數(shù)列滿足。(1)求數(shù)列和數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和;(3)若對(duì)一切正整數(shù)恒成立,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)
已知函數(shù),數(shù)列滿足:,N*.
(1)求數(shù)列的通項(xiàng)公式;
(2)令函數(shù),數(shù)列滿足:,N*),
求證:對(duì)于一切的正整數(shù),都滿足:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
已知點(diǎn)是函數(shù)的圖像上一點(diǎn).等比數(shù)列的前n項(xiàng)和為.數(shù)列的首項(xiàng)為c,且前n項(xiàng)和滿足
(1)求數(shù)列和的通項(xiàng)公式;
(2)若數(shù)列的前項(xiàng)和為,問(wèn)滿足>的最小正整數(shù)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)數(shù)列滿足條件:,,,且數(shù)列是等差數(shù)列.
(1)設(shè),求數(shù)列的通項(xiàng)公式;
(2)若, 求;
(3)數(shù)列的最小項(xiàng)是第幾項(xiàng)?并求出該項(xiàng)的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com