【題目】已知函數(shù).
(1)設(shè)是的極值點(diǎn),求,并求的單調(diào)區(qū)間;
(2)當(dāng)時(shí),證明.
【答案】(1),的單調(diào)遞減區(qū)間為,增區(qū)間為;(2)證明見解析.
【解析】
(1)求出導(dǎo)函數(shù),由求得,再確定的正負(fù),從而確定的單調(diào)區(qū)間;
(2)由得,,構(gòu)造新函數(shù),,只要證明即可,利用導(dǎo)數(shù)求出的最小值即可.只是要注意的唯一解不可直接得出,只能通過的零點(diǎn)來研究的最小值,只要說明即可.
(1),
由是的極值點(diǎn)知,,即,所以.
于是,定義域?yàn)?/span>,且,
函數(shù)在上單調(diào)遞增,且,
因此當(dāng)時(shí),;當(dāng)時(shí),,
所以的單調(diào)遞減區(qū)間為,增區(qū)間為.
(2)當(dāng),時(shí),,從而,則
,
令,,則
在單調(diào)遞增,
且,,
故存在唯一的實(shí)數(shù),使得.
當(dāng)時(shí),,遞減;當(dāng)時(shí),,遞增.
從而當(dāng)時(shí),取最小值.
由得,則,,
故,
由知,,故,
即當(dāng)時(shí),成立.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知長(zhǎng)方體,,,,已知P是矩形內(nèi)一動(dòng)點(diǎn),與平面所成角為,設(shè)P點(diǎn)形成的軌跡長(zhǎng)度為,則_________;當(dāng)的長(zhǎng)度最短時(shí),三棱錐的外接球的表面積為_____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知棱長(zhǎng)為的正方體中,分別為棱和的中點(diǎn).
(1)證明:平面;
(2)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)恰有兩個(gè)極值點(diǎn),則實(shí)數(shù)的取值范圍是( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C的頂點(diǎn)為坐標(biāo)原點(diǎn)O,對(duì)稱軸為軸,其準(zhǔn)線為.
(1)求拋物線C的方程;
(2)設(shè)直線,對(duì)任意的拋物線C上都存在四個(gè)點(diǎn)到直線l的距離為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正方形邊長(zhǎng)為,將沿翻折到的位置,使得二面角的大小為.
(1)證明:平面平面;
(2)點(diǎn)在直線上,且直線與平面所成角正弦值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在疫情這一特殊時(shí)期,教育行政部門部署了“停課不停學(xué)”的行動(dòng),全力幫助學(xué)生在線學(xué)習(xí).復(fù)課后進(jìn)行了摸底考試,某校數(shù)學(xué)教師為了調(diào)查高三學(xué)生這次摸底考試的數(shù)學(xué)成績(jī)與在線學(xué)習(xí)數(shù)學(xué)時(shí)長(zhǎng)之間的相關(guān)關(guān)系,對(duì)在校高三學(xué)生隨機(jī)抽取45名進(jìn)行調(diào)查.知道其中有25人每天在線學(xué)習(xí)數(shù)學(xué)的時(shí)長(zhǎng)是不超過1小時(shí)的,得到了如下的等高條形圖:
(Ⅰ)將頻率視為概率,求學(xué)習(xí)時(shí)長(zhǎng)不超過1小時(shí)但考試成績(jī)超過120分的概率;
(Ⅱ)是否有的把握認(rèn)為“高三學(xué)生的這次摸底考試數(shù)學(xué)成績(jī)與其在線學(xué)習(xí)時(shí)長(zhǎng)有關(guān)”.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】第41屆世界博覽會(huì)于2010年5月1日至10月31日,在中國(guó)上海舉行,氣勢(shì)磅礴的中國(guó)館——“東方之冠”令人印象深刻,該館以“東方之冠,鼎盛中華,天下糧倉(cāng),富庶百姓”為設(shè)計(jì)理念,代表中國(guó)文化的精神與氣質(zhì).其形如冠蓋,層疊出挑,制似斗拱.它有四根高33.3米的方柱,托起斗狀的主體建筑,總高度為60.3米,上方的“斗冠”類似一個(gè)倒置的正四棱臺(tái),上底面邊長(zhǎng)是139.4米,下底面邊長(zhǎng)是69.9米,則“斗冠”的側(cè)面與上底面的夾角約為( ).
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知傾斜角為的直線經(jīng)過拋物線的焦點(diǎn),與拋物線相交于、兩點(diǎn),且.
(1)求拋物線的方程;
(2)設(shè)為拋物線上任意一點(diǎn)(異于頂點(diǎn)),過做傾斜角互補(bǔ)的兩條直線、,交拋物線于另兩點(diǎn)、,記拋物線在點(diǎn)的切線的傾斜角為,直線的傾斜角為,求證:與互補(bǔ).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com