【題目】如圖,某市建有貫穿東西和南北的兩條垂直公路,,在它們交叉路口點(diǎn)處的東北方向建有一個(gè)荷花池,荷花池的外圍是一條環(huán)形公路,荷花池中的固定觀景臺(tái)位于兩條垂直公路的角平分線上,與環(huán)形公路的交點(diǎn)記作.游客游覽荷花池時(shí),需沿公路先到達(dá)環(huán)形公路處.為了分流游客,方便游客游覽荷花池,計(jì)劃從靠近公路,的環(huán)形公路上選,兩處(,關(guān)于直線對(duì)稱)修建直達(dá)觀景臺(tái)的玻璃棧道,.以,所在的直線為,軸建立平面直角坐標(biāo)系,靠近公路,的環(huán)形公路可用曲線近似表示,曲線符合函數(shù).
(1)若百米,點(diǎn)到的垂直距離為1百米,求玻璃棧道的總長(zhǎng)度;
(2)若要使得玻璃棧道的總長(zhǎng)度最小為百米,求觀景臺(tái)的位置.
【答案】(1)百米.(2)
【解析】
(1)由百米可得,點(diǎn)到的垂直距離為1百米可得,用平面兩點(diǎn)間的距離公式可求解答案.
(2)根據(jù)題意即的最小值為,設(shè),,則
,然后換元求出最值,解出的值.
解:(1)在平面直角坐標(biāo)系中,設(shè)定點(diǎn),
因?yàn)?/span>,所以,解得,即點(diǎn).
因?yàn)辄c(diǎn)到的垂直距離為1百米,所以點(diǎn);
所以,
又因?yàn)?/span>,關(guān)于直線對(duì)稱,點(diǎn)在直線上,
所以.即.
所以玻璃棧道的總長(zhǎng)度是百米.
(2)在平面直角坐標(biāo)系中,,設(shè)定點(diǎn),
動(dòng)點(diǎn),因?yàn)?/span>,關(guān)于直線對(duì)稱,
點(diǎn)在直線上,所以.
,則,
令,則,
函數(shù)的導(dǎo)數(shù),
當(dāng)時(shí),,
所以在上單調(diào)減,所以
函數(shù),圖象對(duì)稱軸是,
當(dāng)時(shí),在區(qū)間上單調(diào)遞增,無(wú)最小值;
當(dāng)時(shí),在上單調(diào)遞減,在上單調(diào)遞增,
即在時(shí)有最小值,
由題意,因?yàn)?/span>,所以.
所以若要使得玻璃棧道總長(zhǎng)度最小為百米,觀景平臺(tái)的坐標(biāo)是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某同學(xué)用“隨機(jī)模擬方法”計(jì)算曲線與直線所圍成的曲邊三角形的面積時(shí),用計(jì)算機(jī)分別產(chǎn)生了10個(gè)在區(qū)間[1,e]上的均勻隨機(jī)數(shù)xi和10個(gè)在區(qū)間[0,1]上的均勻隨機(jī)數(shù),其數(shù)據(jù)如下表的前兩行.
x | 2.50 | 1.01 | 1.90 | 1.22 | 2.52 | 2.17 | 1.89 | 1.96 | 1.36 | 2.22 |
y | 0.84 | 0.25 | 0.98 | 0.15 | 0.01 | 0.60 | 0.59 | 0.88 | 0.84 | 0.10 |
lnx | 0.90 | 0.01 | 0.64 | 0.20 | 0.92 | 0.77 | 0.64 | 0.67 | 0.31 | 0.80 |
由此可得這個(gè)曲邊三角形面積的一個(gè)近似值為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知多面體的底面是邊長(zhǎng)為的菱形, 底面, ,且.
(1)證明:平面平面;
(2)若,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2020年,新冠狀肺炎疫情牽動(dòng)每一個(gè)中國(guó)人的心,危難時(shí)刻眾志成城,共克時(shí)艱,為疫區(qū)助力.福建省漳州市東山縣共101個(gè)海鮮商家及個(gè)人為緩解武漢物質(zhì)壓力,募捐價(jià)值百萬(wàn)的海鮮輸送武漢.東山島,別稱陵島,形似蝴蝶亦稱蝶島,隸屬于福建省漳州市東山縣,是福建省第二大島,中國(guó)第七大島,介于廈門(mén)市和廣東省汕頭之間,東南是著名的閩南漁場(chǎng)和粵東漁場(chǎng)交匯處,因地理位置發(fā)展海產(chǎn)品養(yǎng)殖業(yè)具有得天獨(dú)厚的優(yōu)勢(shì).根據(jù)養(yǎng)殖規(guī)模與以往的養(yǎng)殖經(jīng)驗(yàn),某海鮮商家的海產(chǎn)品每只質(zhì)量(克)在正常環(huán)境下服從正態(tài)分布.
(1)隨機(jī)購(gòu)買(mǎi)10只該商家的海產(chǎn)品,求至少買(mǎi)到一只質(zhì)量小于265克該海產(chǎn)品的概率;
(2)2020年該商家考慮增加先進(jìn)養(yǎng)殖技術(shù)投入,該商家欲預(yù)測(cè)先進(jìn)養(yǎng)殖技術(shù)投入為49千元時(shí)的年收益增量.現(xiàn)用以往的先進(jìn)養(yǎng)殖技術(shù)投入(千元)與年收益增量(千元).的數(shù)據(jù)繪制散點(diǎn)圖,由散點(diǎn)圖的樣本點(diǎn)分布,可以認(rèn)為樣本點(diǎn)集中在曲線的附近,且,,其中.根據(jù)所給的統(tǒng)計(jì)量,求y關(guān)于x的回歸方程,并預(yù)測(cè)先進(jìn)養(yǎng)殖技術(shù)投入為49千元時(shí)的年收益增量.
附:若隨機(jī)變量,則;
對(duì)于一組數(shù)據(jù),其回歸線的斜率和截距的最小二乘估計(jì)分別為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)人民法院每年要審理大量案件,去年審理的四類(lèi)案件情況如表所示:
編號(hào) | 項(xiàng)目 | 收案(件) | 結(jié)案(件) | |
判決(件) | ||||
1 | 刑事案件 | 2400 | 2400 | 2400 |
2 | 婚姻家庭、繼承糾紛案件 | 3000 | 2900 | 1200 |
3 | 權(quán)屬、侵權(quán)糾紛案件 | 4100 | 4000 | 2000 |
4 | 合同糾紛案件 | 14000 | 13000 | n |
其中結(jié)案包括:法庭調(diào)解案件、撤訴案件、判決案件等.根據(jù)以上數(shù)據(jù),回答下列問(wèn)題.
(Ⅰ)在編號(hào)為1、2、3的收案案件中隨機(jī)取1件,求該件是結(jié)案案件的概率;
(Ⅱ)在編號(hào)為2的結(jié)案案件中隨機(jī)取1件,求該件是判決案件的概率;
(Ⅲ)在編號(hào)為1、2、3的三類(lèi)案件中,判決案件數(shù)的平均數(shù)為,方差為S12,如果表中n,表中全部(4類(lèi))案件的判決案件數(shù)的方差為S22,試判斷S12與S22的大小關(guān)系,并寫(xiě)出你的結(jié)論(結(jié)論不要求證明).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正三角形ABE與菱形ABCD所在的平面互相垂直,,,M是AB的中點(diǎn),N是CE的中點(diǎn).
(1)求證:;
(2)求證:平面ADE;
(3)求點(diǎn)A到平面BCE的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一批用于手電筒的電池,每節(jié)電池的壽命服從正態(tài)分布(壽命單位:小時(shí)).考慮到生產(chǎn)成本,電池使用壽命在內(nèi)是合格產(chǎn)品.
(1)求一節(jié)電池是合格產(chǎn)品的概率(結(jié)果四舍五入,保留一位小數(shù));
(2)根據(jù)(1)中的數(shù)據(jù)結(jié)果,若質(zhì)檢部門(mén)檢查4節(jié)電池,記抽查電池合格的數(shù)量為,求隨機(jī)變量的分布列、數(shù)學(xué)期望及方差.
附:若隨機(jī)變量服從正態(tài)分布,則,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知平行四邊形和矩形所在平面垂直,其中為棱的中點(diǎn),為的中點(diǎn).
(1)求證:;
(2)若點(diǎn)到平面的距離是,求多面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)的極值點(diǎn);
(2)當(dāng)時(shí),當(dāng)函數(shù)恰有三個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com