已知橢圓的右焦點(diǎn),長(zhǎng)軸的左、右端點(diǎn)分別為,且.
(1)求橢圓的方程;
(2)過(guò)焦點(diǎn)斜率為()的直線(xiàn)交橢圓于兩點(diǎn),弦的垂直平分線(xiàn)與軸相交于點(diǎn). 試問(wèn)橢圓上是否存在點(diǎn)使得四邊形為菱形?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由.
(1);(2)
解析試題分析:(1)由橢圓的右焦點(diǎn),即.又長(zhǎng)軸的左、右端點(diǎn)分別為,且,即可得,即可求出.從而得到橢圓的方程.
(2)由(1)可得假設(shè)直線(xiàn)AB的方程聯(lián)立橢圓方程消去y即可得到一個(gè)關(guān)于x的二次方程,由韋達(dá)定理得到根與直線(xiàn)斜率k的關(guān)系式.寫(xiě)出線(xiàn)段AB的中點(diǎn)坐標(biāo)以及線(xiàn)段AB的垂直平分線(xiàn)的方程.即可得到點(diǎn)D的坐標(biāo).假設(shè)存在點(diǎn)E由于對(duì)稱(chēng)性本小題的問(wèn)題等價(jià)轉(zhuǎn)化為即可.所以表示出點(diǎn)E的坐標(biāo).代入橢圓方程根據(jù)的解得情況即可結(jié)論.
試題解析:(1)依題設(shè),,則,.
由,解得,所以.
所以橢圓的方程為.
(2)依題直線(xiàn)的方程為.
由得.
設(shè),,弦的中點(diǎn)為,
則,,,,
所以.
直線(xiàn)的方程為,
令,得,則.
若四邊形為菱形,則,.
所以.
若點(diǎn)在橢圓上,則.
整理得,解得.所以橢圓上存在點(diǎn)使得四邊形為菱形.
考點(diǎn):1.向量的數(shù)量積.2.橢圓的性質(zhì).3.等價(jià)轉(zhuǎn)化的數(shù)學(xué)思想.4.運(yùn)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)橢圓E:的焦點(diǎn)在x軸上.
(1)若橢圓E的焦距為1,求橢圓E的方程;
(2)設(shè)F1、F2分別是橢圓E的左、右焦點(diǎn),P為橢圓E上第一象限內(nèi)的點(diǎn),直線(xiàn)F2P交y軸于點(diǎn)Q,并且F1P⊥F1Q.證明:當(dāng)a變化時(shí),點(diǎn)P在某定直線(xiàn)上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓:的一個(gè)焦點(diǎn)為,離心率為.設(shè)是橢圓長(zhǎng)軸上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)且斜率為的直線(xiàn)交橢圓于,兩點(diǎn).
(1)求橢圓的方程;
(2)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知拋物線(xiàn)C1:x2=y,圓C2:x2+(y-4)2=1的圓心為點(diǎn)M
(1)求點(diǎn)M到拋物線(xiàn)C1的準(zhǔn)線(xiàn)的距離;
(2)已知點(diǎn)P是拋物線(xiàn)C1上一點(diǎn)(異于原點(diǎn)),過(guò)點(diǎn)P作圓C2的兩條切線(xiàn),交拋物線(xiàn)C1于A,B兩點(diǎn),若過(guò)M,P兩點(diǎn)的直線(xiàn)l垂直于AB,求直線(xiàn)l的方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的離心率為,以原點(diǎn)為圓心、橢圓的短半軸長(zhǎng)為半徑的圓與直線(xiàn)相切.
(1)求橢圓的方程;
(2)設(shè),過(guò)點(diǎn)作與軸不重合的直線(xiàn)交橢圓于、兩點(diǎn),連結(jié)、分別交直線(xiàn)于、兩點(diǎn).試問(wèn)直線(xiàn)、的斜率之積是否為定值,若是,求出該定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的一個(gè)頂點(diǎn)和兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為4.
(1)求橢圓的方程;
(2)已知直線(xiàn)與橢圓交于、兩點(diǎn),試問(wèn),是否存在軸上的點(diǎn),使得對(duì)任意的,為定值,若存在,求出點(diǎn)的坐標(biāo),若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的左右頂點(diǎn)分別為,離心率.
(1)求橢圓的方程;
(2)若點(diǎn)為曲線(xiàn):上任一點(diǎn)(點(diǎn)不同于),直線(xiàn)與直線(xiàn)交于點(diǎn),為線(xiàn)段的中點(diǎn),試判斷直線(xiàn)與曲線(xiàn)的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
拋物線(xiàn),直線(xiàn)過(guò)拋物線(xiàn)的焦點(diǎn),交軸于點(diǎn).
(1)求證:;
(2)過(guò)作拋物線(xiàn)的切線(xiàn),切點(diǎn)為(異于原點(diǎn)),
(i)是否恒成等差數(shù)列,請(qǐng)說(shuō)明理由;
(ii)重心的軌跡是什么圖形,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知離心率為的橢圓的頂點(diǎn)恰好是雙曲線(xiàn)的左右焦點(diǎn),點(diǎn)是橢圓上不同于的任意一點(diǎn),設(shè)直線(xiàn)的斜率分別為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)當(dāng),在焦點(diǎn)在軸上的橢圓上求一點(diǎn)Q,使該點(diǎn)到直線(xiàn)(的距離最大。
(3)試判斷乘積“(”的值是否與點(diǎn)(的位置有關(guān),并證明你的結(jié)論;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com