【題目】直四棱柱被平面所截,所得的一部分如圖所示,.
(1)證明:平面;
(2)若,,平面與平面所成角的正切值為,求點(diǎn)到平面的距離.
【答案】(1)詳見解析;(2).
【解析】
(1)要證線面平行只要證平面外一條直線平行于平面內(nèi)一條直線即可,本題證明為平行四邊形即可得證;
(2)根據(jù)所給關(guān)系,建立直角坐標(biāo)系,求出兩平面的法向量,利用平面與平面所成角的正切值為,可求出E點(diǎn)坐標(biāo),再利用幾何關(guān)系或者投影即可得解.
(1)依題:平面與兩平行平面,的交線分別為,,
故有,又,故有平行四邊形,
∴,面,面,∴平面.
(2)中,由余弦定理可得,由勾股定理得,又平面,
故而,,兩兩垂直,如圖建系.
【法一求】取中點(diǎn),由,得平行四邊形,
∴,平面,作,(連),又,
∴平面,得,又,∴為所求二面角的平面角.
易求,又,.
【法二求】面的法向量顯然為,設(shè)面的法向量為,,
,令,,依題:.
由平面,點(diǎn)到平面的距離轉(zhuǎn)化為到平面的距離,,,
,設(shè)平面的法向量為,可為,
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】檳榔原產(chǎn)于馬來西亞,中國(guó)主要分布在云南、海南及臺(tái)灣等熱帶地區(qū),亞洲熱帶地區(qū)廣泛栽培.檳榔是重要的中藥材,南方一些少數(shù)民族還有將果實(shí)作為一種咀嚼嗜好品,但其被世界衛(wèi)生組織國(guó)際癌癥研究機(jī)構(gòu)列為致癌物清單Ⅰ類致癌物.云南某民族中學(xué)為了解,兩個(gè)少數(shù)民族班的學(xué)生咀嚼檳榔的情況,分別從這兩個(gè)班中隨機(jī)抽取5名學(xué)生進(jìn)行調(diào)查,經(jīng)他們平均每周咀嚼檳榔的顆數(shù)作為樣本,繪制成如圖所示的莖葉圖(圖中的莖表示十位數(shù)字,葉表示個(gè)位數(shù)字).
(1)你能否估計(jì)哪個(gè)班的學(xué)生平均每周咀嚼檳榔的顆數(shù)較多?
(2)在被抽取的10名學(xué)生中,從平均每周咀嚼檳榔的顆數(shù)不低于20顆的學(xué)生中隨機(jī)抽取3名學(xué)生,求抽到班學(xué)生人數(shù)的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=1,AD=2,△ABD沿對(duì)角線BD翻折,形成三棱錐A﹣BCD.
①當(dāng)時(shí),三棱錐A﹣BCD的體積為;
②當(dāng)面ABD⊥面BCD時(shí),AB⊥CD;
③三棱錐A﹣BCD外接球的表面積為定值.
以上命題正確的是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,點(diǎn)為的中點(diǎn),點(diǎn)為線段垂直平分線上的一點(diǎn),且,固定邊,在平面內(nèi)移動(dòng)頂點(diǎn),使得的內(nèi)切圓始終與切于線段的中點(diǎn),且、在直線的同側(cè),在移動(dòng)過程中,當(dāng)取得最小值時(shí),的面積為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年反映社會(huì)現(xiàn)實(shí)的電影《我不是藥神》引起了很大的轟動(dòng),治療特種病的創(chuàng)新藥研發(fā)成了當(dāng)務(wù)之急.為此,某藥企加大了研發(fā)投入,市場(chǎng)上治療一類慢性病的特效藥品的研發(fā)費(fèi)用(百萬元)和銷量(萬盒)的統(tǒng)計(jì)數(shù)據(jù)如下:
研發(fā)費(fèi)用(百萬元) | 2 | 3 | 6 | 10 | 13 | 15 | 18 | 21 |
銷量(萬盒) | 1 | 1 | 2 | 2.5 | 3.5 | 3.5 | 4.5 | 6 |
(1)根據(jù)數(shù)據(jù)用最小二乘法求出與的線性回歸方程(系數(shù)用分?jǐn)?shù)表示,不能用小數(shù));
(2)該藥企準(zhǔn)備生產(chǎn)藥品的三類不同的劑型,,
附:(1)(2).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面為直角梯形,,,,為的中點(diǎn).
(Ⅰ)求證:平面
(Ⅱ)若平面平面,異面直線與所成角為60°,且是鈍角三角形,求二面角的正弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正三棱柱(側(cè)棱垂直于底面,且底面三角形是等邊三角形)中,,分別是的中點(diǎn).
(1)求證:平面∥平面;
(2)在線段上是否存在一點(diǎn)使平面?若存在,確定點(diǎn)的位置;若不存在,也請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若存在極值,求實(shí)數(shù)a的取值范圍;
(2)設(shè),設(shè)是定義在上的函數(shù).
(ⅰ)證明:在上為單調(diào)遞增函數(shù)(是的導(dǎo)函數(shù));
(ⅱ)討論的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com