【題目】如圖,四棱錐的底面為直角梯形,,,,的中點.

(Ⅰ)求證:平面

(Ⅱ)若平面平面,異面直線所成角為60°,且是鈍角三角形,求二面角的正弦值

【答案】(Ⅰ)詳見解析;(Ⅱ)

【解析】

(Ⅰ)取的中點,連接,證明四邊形為平行四邊形,得到即可

(Ⅱ)由條件得出,然后證明平面,然后以為坐標原點,所在直線為軸、軸建立空間直角坐標系,分別求出平面和平面的法向量即可.

(Ⅰ)證明:取的中點,連接,

因為的中點,則,且,

,且,所以,,

所以四邊形為平行四邊形,

所以,平面平面,

所以平面

(Ⅱ)由題意可知,所以或其補角為異面直線所成角,

,為鈍角三角形,所以

又平面平面,平面平面,,

所以平面,

為坐標原點,所在直線為軸、軸建立空間直角坐標系,

,,,,

向量,

設平面的法向量為

,令,

得平面的一個法向量為

同理可得平面的一個法向量為

設二面角的平面角為

故二面角的正弦值為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,摩天輪的半徑,它的最低點距地面的高度忽略不計.地上有一長度為的景觀帶,它與摩天輪在同一豎直平面內,且.從最低點處逆時針方向轉動到最高點處,記.

1)當時,求點距地面的高度;

2)試確定的值,使得取得最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的最大值為,且曲線x0處的切線與直線平行(其中e為自然對數(shù)的底數(shù)).

1)求實數(shù)a,b的值;

2)如果,且,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】直四棱柱被平面所截,所得的一部分如圖所示,

1)證明:平面;

2)若,,平面與平面所成角的正切值為,求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若上存在單調遞增區(qū)間,求實數(shù)的取值范圍;

2)設,若,恒有成立,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱柱中,平面,,,,,為棱的中點

1)證明:;

2)設點在線段上,且直線與平面所成角的正弦值為,求線段的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】東京夏季奧運會推遲至2021723日至88日舉行,此次奧運會將設置4 100米男女混泳接力賽這一新的比賽項目,比賽的規(guī)則是:每個參賽國家派出22女共計4名運動員參加比賽,按照仰泳蛙泳蝶泳自由泳的接力順序,每種泳姿100米且由1名運動員完成,且每名運動員都要出場.若中國隊確定了備戰(zhàn)該項目的4名運動員名單,其中女運動員甲只能承擔仰泳或者自由泳,男運動員乙只能承擔蝶泳或者蛙泳,剩下2名運動員四種泳姿都可以承擔,則中國隊參賽的安排共有(

A.144B.8C.24D.12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】X是有限集,t為正整數(shù),F是包含t個子集的子集族:F=.如果F中的部分子集構成的集族S滿足:對S中任意兩個不相等的集合A、B,均不成立,則稱S為反鏈.S1為包含集合最多的反鏈,S2是任意反鏈.證明:存在S2S1的單射f,滿足成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓C:過原點的直線與橢圓交于A,B兩點(點A在第一象限),過點Ax軸的垂線,垂足為點,設直線BE與橢圓的另一交點為P,連接AP得到直線l,交x軸于點M,交y軸于點N.

1)若,求直線AP的斜率;

2)記的面積分別為S1,S2,S3,求的的最大值.

查看答案和解析>>

同步練習冊答案