已知坐標(biāo)平面內(nèi).動(dòng)點(diǎn)P與外切與內(nèi)切.
(1)求動(dòng)圓心P的軌跡的方程;
(2)若過(guò)D點(diǎn)的斜率為2的直線與曲線交于兩點(diǎn)A、B,求AB的長(zhǎng);
(3)過(guò)D的動(dòng)直線與曲線交于A、B兩點(diǎn),線段中點(diǎn)為M,求M的軌跡方程.

(1);(2);(3)

解析試題分析:(1)由圓的內(nèi)切與外切的圓心距與圓的半徑的關(guān)系,根據(jù)橢圓的定義可求出橢圓的方程.
(2)由過(guò)點(diǎn)D的直線及斜率可寫(xiě)出該直線方程.再聯(lián)立橢圓方程即可得通過(guò)弦長(zhǎng)公式即可求得AB弦的長(zhǎng)度.
(3)有點(diǎn)差法可得到一個(gè)關(guān)于中點(diǎn)坐標(biāo)和斜率的關(guān)系的等式,同時(shí)再利用斜率的另一種表示形式,就如中點(diǎn)與點(diǎn)D再得到斜率的一個(gè)等式,消去相應(yīng)的k從而可得一個(gè)關(guān)于中點(diǎn)x,y的一個(gè)等式.即為所求的中點(diǎn)的軌跡方程.
試題解析:(1)依題意可得,當(dāng)令動(dòng)圓半徑為r時(shí),有,易得.由橢圓的定義可知,點(diǎn)P的軌跡是以C(-1,0)、D(1,0)為焦點(diǎn)的橢圓.令橢圓方程為.所以點(diǎn)P的軌跡方程為.
(2)過(guò)點(diǎn)D斜率為2的直線方程為:,消去y得到.所以.
(3)據(jù)點(diǎn)差法結(jié)果可知
若令M坐標(biāo)為(x,y),則有 ,化簡(jiǎn)可得:

考點(diǎn):1.橢圓的定義.2.橢圓的中的弦長(zhǎng)公式.3.點(diǎn)差法的應(yīng)用.4.方程的思想.5.數(shù)學(xué)中常見(jiàn)的算兩次的思想.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(1)已知點(diǎn),過(guò)點(diǎn)的直線與過(guò)點(diǎn)的直線相交于點(diǎn),設(shè)直線的斜率為,直線的斜率為,如果,求點(diǎn)的軌跡;
(2)用正弦定理證明三角形外角平分線定理:如果在中,的外角平分線與邊的延長(zhǎng)線相交于點(diǎn),則.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,已知橢圓的兩個(gè)焦點(diǎn)分別為、,且到直線的距離等于橢圓的短軸長(zhǎng).

(Ⅰ) 求橢圓的方程;
(Ⅱ) 若圓的圓心為(),且經(jīng)過(guò)、,是橢圓上的動(dòng)點(diǎn)且在圓外,過(guò)作圓的切線,切點(diǎn)為,當(dāng)的最大值為時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓過(guò)定點(diǎn),圓心在拋物線上,、為圓軸的交點(diǎn).
(1)當(dāng)圓心是拋物線的頂點(diǎn)時(shí),求拋物線準(zhǔn)線被該圓截得的弦長(zhǎng).
(2)當(dāng)圓心在拋物線上運(yùn)動(dòng)時(shí),是否為一定值?請(qǐng)證明你的結(jié)論.
(3)當(dāng)圓心在拋物線上運(yùn)動(dòng)時(shí),記,,求的最大值,并求出此時(shí)圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓的左、右焦點(diǎn)分別為,且,長(zhǎng)軸的一個(gè)端點(diǎn)與短軸兩個(gè)端點(diǎn)組成等邊三角形的三個(gè)頂點(diǎn).
(1)求橢圓方程;
(2)設(shè)橢圓與直線相交于不同的兩點(diǎn)M、N,又點(diǎn),當(dāng)時(shí),求實(shí)數(shù)m的取值范圍,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C:的兩個(gè)焦點(diǎn)是F1(c,0),F(xiàn)2(c,0)(c>0)。
(I)若直線與橢圓C有公共點(diǎn),求的取值范圍;
(II)設(shè)E是(I)中直線與橢圓的一個(gè)公共點(diǎn),求|EF1|+|EF2|取得最小值時(shí),橢圓的方程;
(III)已知斜率為k(k≠0)的直線l與(II)中橢圓交于不同的兩點(diǎn)A,B,點(diǎn)Q滿足   ,其中N為橢圓的下頂點(diǎn),求直線l在y軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知點(diǎn),,直線AG,BG相交于點(diǎn)G,且它們的斜率之積是
(Ⅰ)求點(diǎn)G的軌跡的方程;
(Ⅱ)圓上有一個(gè)動(dòng)點(diǎn)P,且P在x軸的上方,點(diǎn),直線PA交(Ⅰ)中的軌跡于D,連接PB,CD.設(shè)直線PB,CD的斜率存在且分別為,若,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)橢圓 的離心率為,點(diǎn),0),(0,)原點(diǎn)到直線的距離為

(1) 求橢圓的方程;
(2) 設(shè)點(diǎn)為(,0),點(diǎn)在橢圓上(與、均不重合),點(diǎn)在直線上,若直線的方程為,且,試求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知、分別是橢圓的左、右焦點(diǎn),右焦點(diǎn)到上頂點(diǎn)的距離為2,若
(Ⅰ)求此橢圓的方程;
(Ⅱ)直線與橢圓交于兩點(diǎn),若弦的中點(diǎn)為,求直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案