設(shè)函數(shù).
(1)求的單調(diào)區(qū)間;
(2)設(shè)函數(shù),若當時,恒成立,求的取值范圍.
(1) 當時,,所以在上是增函數(shù)當時,在上是增函數(shù),在上是減函數(shù);(2)
解析試題分析:(1)根據(jù)導數(shù)公式求出,對于含有的參數(shù)要進行討論,或兩種情況;(2)設(shè),將恒成立,轉(zhuǎn)化成恒成立,所以求,將分解因式,討論的范圍,確定的正負,討論的單調(diào)性,確定恒成立的條件,確定的范圍,此題考察了導數(shù)的應用,屬于中等偏上的系統(tǒng),兩問都考察到了分類討論的范圍,這是我們在做題時考慮問題不全面,容易丟分的環(huán)節(jié).
試題解析:(1)解:因為,其中. 所以, 2分
當時,,所以在上是增函數(shù) 4分
當時,令,得
所以在上是增函數(shù),在上是減函數(shù). 6分
(2)解:令,則,
根據(jù)題意,當時,恒成立. 8分
所以
(1)當時,時,恒成立.
所以在上是增函數(shù),且,所以不符題意 10分
(2)當時,時,恒成立.
所以在上是增函數(shù),且,所以不符題意 12分
(3)當時,時,恒有,故在上是減函數(shù),
于是“對任意都成立”的充要條件是,
即,解得,故.
綜上所述,的取值范圍是. 15分
考點:1.利用導數(shù)求函數(shù)的單調(diào)區(qū)間;2.利用導數(shù)解決恒成立的問題.
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)y=xlnx+1.
(1)求這個函數(shù)的導數(shù);
(2)求這個函數(shù)的圖象在點x=1處的切線方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
(1)當時,求函數(shù)的極小值;
(2)當時,過坐標原點作曲線的切線,設(shè)切點為,求實數(shù)的值;
(3)設(shè)定義在上的函數(shù)在點處的切線方程為當時,若在內(nèi)恒成立,則稱為函數(shù)的“轉(zhuǎn)點”.當時,試問函數(shù)是否存在“轉(zhuǎn)點”.若存在,請求出“轉(zhuǎn)點”的橫坐標,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),,其中的函數(shù)圖象在點處的切線平行于軸.
(1)確定與的關(guān)系; (2)若,試討論函數(shù)的單調(diào)性;
(3)設(shè)斜率為的直線與函數(shù)的圖象交于兩點()證明:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(Ⅰ)若,求函數(shù)的單調(diào)區(qū)間和極值;
(Ⅱ)設(shè)函數(shù)圖象上任意一點的切線的斜率為,當的最小值為1時,求此時切線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
甲、乙兩地相距1000,貨車從甲地勻速行駛到乙地,速度不得超過80,已知貨車每小時的運輸成本(單位:元)由可變成本和固定成本組成,可變成本是速度平方的倍,固定成本為a元.
(1)將全程運輸成本y(元)表示為速度v()的函數(shù),并指出這個函數(shù)的定義域;
(2)為了使全程運輸成本最小,貨車應以多大的速度行駛?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)函數(shù),曲線通過點(0,2a+3),且在處的切線垂直于y軸.
(I)用a分別表示b和c;
(II)當bc取得最大值時,寫出的解析式;
(III)在(II)的條件下,若函數(shù)g(x)為偶函數(shù),且當時,,求當時g(x)的表達式,并求函數(shù)g(x)在R上的最小值及相應的x值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com