【題目】已知{an}是公差為3的等差數(shù)列,數(shù)列{bn}滿足b1=1,b2= ,anbn+1+bn+1=nbn
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)求{bn}的前n項(xiàng)和.

【答案】解:(Ⅰ)∵anbn+1+bn+1=nbn
當(dāng)n=1時(shí),a1b2+b2=b1
∵b1=1,b2= ,
∴a1=2,
又∵{an}是公差為3的等差數(shù)列,
∴an=3n﹣1,
(Ⅱ)由(I)知:(3n﹣1)bn+1+bn+1=nbn
即3bn+1=bn
即數(shù)列{bn}是以1為首項(xiàng),以 為公比的等比數(shù)列,
∴{bn}的前n項(xiàng)和Sn= = (1﹣3n)=
【解析】(Ⅰ)令n=1,可得a1=2,結(jié)合{an}是公差為3的等差數(shù)列,可得{an}的通項(xiàng)公式;(Ⅱ)由(1)可得:數(shù)列{bn}是以1為首項(xiàng),以 為公比的等比數(shù)列,進(jìn)而可得:{bn}的前n項(xiàng)和.
【考點(diǎn)精析】本題主要考查了數(shù)列的通項(xiàng)公式的相關(guān)知識(shí)點(diǎn),需要掌握如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求的單調(diào)區(qū)間;

(Ⅱ)若,若對(duì)任意,存在,使得 成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線上的點(diǎn)到二定點(diǎn)、 的距離之和為定值,以為圓心半徑為4的圓有兩交點(diǎn),其中一交點(diǎn)為, 在y軸正半軸上,圓與x軸從左至右交于二點(diǎn),

(1)求曲線、的方程;

(2)曲線,直線交于點(diǎn),過點(diǎn)的直線與曲線交于二點(diǎn),過的切線, 交于.當(dāng)x軸上方時(shí),是否存在點(diǎn),滿足,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)盒子里裝有大小均勻的8個(gè)小球,其中有紅色球4個(gè),編號(hào)分別為1,2,3,4;白色球4個(gè),編號(hào)分別為2,3,4,5. 從盒子中任取4個(gè)小球(假設(shè)取到任何一個(gè)小球的可能性相同).

(1)求取出的4個(gè)小球中,含有編號(hào)為4的小球的概率;

(2)在取出的4個(gè)小球中,小球編號(hào)的最大值設(shè)為,求隨機(jī)變量的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是定義在[﹣1,1]上的奇函數(shù),當(dāng)x∈[﹣1,0]時(shí),函數(shù)的解析式為f(x)= (a∈R).
(1)求出f(x)在[0,1]上的解析式;
(2)求f(x)在[﹣1,0]上的最大值.
(3)對(duì)任意的x1 , x2∈[﹣1,1]都有|f(x1)﹣f(x2)|≤M成立,求最小的整數(shù)M的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,既是奇函數(shù)又是增函數(shù)的是(
A.y=x+1
B.y=﹣x2
C.y=x|x|
D.y=x1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】偶函數(shù)f(x)(x∈R)滿足:f(﹣4)=f(2)=0,且在區(qū)間[0,3]與[3,+∞)上分別遞減,遞增,則不等式xf(x)<0的解集為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f (x)x2,g(x)x1.

(1)若存在xR使f(x)<b·g(x),求實(shí)數(shù)b的取值范圍;

(2)設(shè)F(x)f(x)mg(x)1mm2,且|F(x)|上單調(diào)遞增,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,AC=BC= AA1 , D是棱AA1的中點(diǎn),DC1⊥BD.
(1)證明:DC1⊥面BCD;
(2)設(shè)AA1=2,求點(diǎn)B1到平面BDC1的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案