【題目】下列關(guān)系式中正確的是( )
A. sin11°<cos10°<sin168° B. sin168°<sin11°<cos10°
C. sin11°<sin168°<cos10° D. sin168°<cos10°<sin11°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義在R上的奇函數(shù),當(dāng)時(shí),.其中且.
(1)求的解析式;
(2)解關(guān)于的不等式,結(jié)果用集合或區(qū)間表示.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩所學(xué)校高三年級(jí)分別有600人,500人,為了解兩所學(xué)校全體高三年級(jí)學(xué)生在該地區(qū)五校聯(lián)考的數(shù)學(xué)成績情況,采用分層抽樣方法從兩所學(xué)校一共抽取了110名學(xué)生的數(shù)學(xué)成績,并作出了頻數(shù)分布統(tǒng)計(jì)表如下:
甲校:
分組 | [70,80) | [80,90) | [90,100) | [100,110) |
頻數(shù) | 3 | 4 | 7 | 14 |
分組 | [110,120) | [120,130) | [130,140) | [140,150] |
頻數(shù) | 17 | x | 4 | 2 |
乙校:
分組 | [70,80) | [80,90) | [90,100) | [100,110) |
頻數(shù) | 1 | 2 | 8 | 9 |
分組 | [110,120) | [120,130) | [130,140) | [140,150] |
頻數(shù) | 10 | 10 | y | 4 |
(1)計(jì)算x,y的值;
(2)若規(guī)定考試成績?cè)赱120,150]內(nèi)為優(yōu)秀,由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面的2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為兩所學(xué)校的數(shù)學(xué)成績有差異;
(3)若規(guī)定考試成績?cè)赱120,150]內(nèi)為優(yōu)秀,現(xiàn)從已抽取的110人中抽取兩人,要求每校抽1人,所抽的兩人中有人優(yōu)秀的條件下,求乙校被抽到的同學(xué)不是優(yōu)秀的概率.
甲校 | 乙校 | 總計(jì) | |
優(yōu)秀 | |||
非優(yōu)秀 | |||
總計(jì) |
參考公式:K2= ,其中n=a+b+c+d.
臨界值表:
P(K2≥k0) | 0.10 | 0.05 | 0.010 |
k0 | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)的定義域?yàn)?/span>,若對(duì)于任意的,,當(dāng)時(shí),都有,則稱函數(shù)在上為非減函數(shù).設(shè)函數(shù)在上為非減函數(shù),且滿足以下三個(gè)條件:①;②;③,則等于( ).
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域?yàn)镽的函數(shù)f(x)在(2,+∞)上單調(diào)遞減,且y=f(x+2)為偶函數(shù),則關(guān)于x的不等式f(2x﹣1)﹣f(x+1)>0的解集為( )
A.(﹣∞,﹣ )∪(2,+∞)
B.(﹣ ,2)
C.(﹣∞, )∪(2,+∞)
D.( ,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了解該校教師對(duì)教工食堂的滿意度情況,隨機(jī)訪問了名教師.根據(jù)這名教師對(duì)該食堂的評(píng)分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為: , ,…, , .
(1)求頻率分布直方圖中的值;
(2)從評(píng)分在的受訪教師中,隨機(jī)抽取2人,求此2人的評(píng)分都在的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若對(duì)任意,都有恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C1的參數(shù)方程是 (φ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)系方程是 ,正方形ABCD的頂點(diǎn)都在C1上,且A,B,C,D依逆時(shí)針次序排列,點(diǎn)A的極坐標(biāo)為 .
(1)求點(diǎn)A,B,C,D的直角坐標(biāo);
(2)設(shè)P為C2上任意一點(diǎn),求|PA|2+|PB|2+|PC|2+|PD|2的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)不論取什么值, 函數(shù)的圖象都過定點(diǎn),求點(diǎn)的坐標(biāo);
(2)若成立, 求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com