【題目】函數(shù)的定義域為,若對于任意的,,當(dāng)時,都有,則稱函數(shù)在上為非減函數(shù).設(shè)函數(shù)在上為非減函數(shù),且滿足以下三個條件:①;②;③,則等于( ).
A. B. C. D.
【答案】B
【解析】
由賦值法得到f()=,f()=,再根據(jù)題中的表達(dá)式遞推得到f()=,由f()=及②得到f()=,再由題中所給的非減函數(shù)得到可得 f()≤f()≤f(),進(jìn)而得到結(jié)果.
令x=1,由條件求得f(1)=1,f()=f(1)=,再由 f()+f()=1,由此求得f()=.
又∵②,令x=1,可得 f()=f(1)=.
再由③可得f()+f()=1,故有f()=.
對于②,令x=1可得 f()=f(1)=;
由此可得 f()=f()=、f()=f()=、f()=f()=、f()= f()=.
令x=,由f()=及②,可得 f()=,f()=,f()=,f()=.
再由可得 f()≤f()≤f(),即 ≤f()≤,故 f()=.
故答案為:B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代秦九韶算法可計算多項式anxn+an﹣1xn﹣1+…+a1x+a0的值,它所反映的程序框圖如圖所示,當(dāng)x=1時,當(dāng)多項式為x4+4x3+6x2+4x+1的值為( )
A.5
B.16
C.15
D.11
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)判斷并證明函數(shù)的奇偶性;
(2)判斷當(dāng)時函數(shù)的單調(diào)性,并用定義證明;
(3)若定義域為,解不等式.
【答案】(1)奇函數(shù)(2)增函數(shù)(3)
【解析】試題分析:(1)判斷與證明函數(shù)的奇偶性,首先要確定函數(shù)的定義域是否關(guān)于原點對稱,再判斷f(-x)與f(x)的關(guān)系,如果對定義域上的任意x,都滿足f(-x)=f(x)就是偶函數(shù),如果f(-x)=-f(x)就是奇函數(shù),否則是非奇非偶函數(shù)。(2)利函數(shù)單調(diào)性定義證明單調(diào)性,按假設(shè),作差,化簡,判斷,下結(jié)論五個步驟。(3)由(1)(2)奇函數(shù)在(-1,1)為單調(diào)函數(shù),
原不等式變形為f(2x-1)<-f(x),即f(2x-1)<f(-x),再由函數(shù)的單調(diào)性及定義(-1,1)求解得x范圍。
試題解析:(1)函數(shù)為奇函數(shù).證明如下:
定義域為
又
為奇函數(shù)
(2)函數(shù)在(-1,1)為單調(diào)函數(shù).證明如下:
任取,則
,
即
故在(-1,1)上為增函數(shù)
(3)由(1)、(2)可得
則
解得:
所以,原不等式的解集為
【點睛】
(1)奇偶性:判斷與證明函數(shù)的奇偶性,首先要確定函數(shù)的定義域是否關(guān)于原點對稱,再判斷f(-x)與f(x)的關(guān)系,如果對定義域上的任意x,都滿足f(-x)=f(x)就是偶函數(shù),如果f(-x)=-f(x)就是奇函數(shù),否則是非奇非偶函數(shù)。
(2)單調(diào)性:利函數(shù)單調(diào)性定義證明單調(diào)性,按假設(shè),作差,化簡,定號,下結(jié)論五個步驟。
【題型】解答題
【結(jié)束】
22
【題目】已知函數(shù).
(1)若的定義域和值域均是,求實數(shù)的值;
(2)若在區(qū)間上是減函數(shù),且對任意的,都有,求實數(shù)的取值范圍;
(3)若,且對任意的,都存在,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓的左、右焦點分別是,且點在上,拋物線與橢圓交于四點
(I)求的方程;
(Ⅱ)試探究坐標(biāo)平面上是否存在定點,滿足?(若存在,求出的坐標(biāo);若不存在,需說明理由.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知P是橢圓上的一點,F1,F2是橢圓的兩個焦點。
(1)當(dāng)∠F1PF2=60°時,求△F1PF2的面積;
(2)當(dāng)∠F1PF2為鈍角時,求點P橫坐標(biāo)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)系式中正確的是( 。
A. sin11°<cos10°<sin168° B. sin168°<sin11°<cos10°
C. sin11°<sin168°<cos10° D. sin168°<cos10°<sin11°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,正方形所在的平面與正三角形ABC所在的平面互相垂直, ,且, 是的中點.
(1)求證: ∥平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的標(biāo)準(zhǔn)方程是,
(1)求它的焦點坐標(biāo)和準(zhǔn)線方程.
(2)直線L過已知拋物線的焦點且傾斜角為,并與拋物線相交于A、B兩點,求弦AB的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com