【題目】袋中裝有3個白球,4個黑球,從中任取3個球,則

①恰有1個白球和全是白球;

②至少有1個白球和全是黑球;

③至少有1個白球和至少有2個白球;

④至少有1個白球和至少有1個黑球.

在上述事件中,是互斥事件但不是對立事件的為(

A.B.C.D.

【答案】B

【解析】

根據(jù)互斥事件和對立事件的定義進行判斷即可.

表示白球,表示黑球,從袋中任取3個球,共包括4個基本事件

分別為

對①,事件“恰有1個白球”包含的基本事件為:,事件“全是白球”包含是基本事件為:,由互斥事件和對立事件的定義可知,事件“恰有1個白球”和“全是白球”互為對立事件,但不是對立事件;

對②,事件“至少有1個白球”包含的基本事件為:,事件“全是黑球”包含的基本事件為:,由互斥事件和對立事件的定義可知,事件“至少有1個白球”和“全是黑球”互為對立事件,也是對立事件;

對③,事件“至少有1個白球”包含的基本事件為:,事件“至少有2個白球”包含的基本事件為:,由互斥事件和對立事件的定義可知,事件“至少有1個白球”和“至少有2個白球”,既不是互斥事件也不是對立事件;

對④,事件“至少有1個白球”包含的基本事件為:,事件“至少有1個黑球”包含的基本事件為:,由互斥事件和對立事件的定義可知,事件“至少有1個白球”和“至少有1個黑球”,既不是互斥事件也不是對立事件;

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017514日至15日,一帶一路國際合作高峰論壇在中國首都北京舉行,會議期間,達成了多項國際合作協(xié)議.假設(shè)甲、乙兩種品牌的同類產(chǎn)品出口某國家的市場銷售量相等,該國質(zhì)量檢驗部門為了解他們的使用壽命,現(xiàn)從這兩種品牌的產(chǎn)品中分別隨機抽取300個進行測試,結(jié)果統(tǒng)計如下圖所示,已知乙品牌產(chǎn)品使用壽命小于200小時的概率估計值為.

(1)的值;

(2)估計甲品牌產(chǎn)品壽命小于200小時的概率;

(3)這兩種品牌產(chǎn)品中,某個產(chǎn)品已使用了200小時,試估計該產(chǎn)品是乙品牌的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

)當時,求曲線在點處的切線方程;

)當時,求證:上為增函數(shù);

)若在區(qū)間上有且只有一個極值點,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,正四棱錐中,為底面正方形的中心,側(cè)棱與底面所成的角的正切值為

1)求側(cè)面與底面所成的二面角的大小;

2)若的中點,求異面直線所成角的正切值;

3)問在棱上是否存在一點,使⊥側(cè)面,若存在,試確定點的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當時,求的單調(diào)增區(qū)間;

(2)令.

①當時,若函數(shù)恰有兩個不同的零點,求的值;

②當時,若的解集為,且中有且僅有一個整數(shù),求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),).

(1)若上單調(diào)遞減,求的取值范圍;

(2)當時,判斷關(guān)于的方程的解的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某社區(qū)為豐富居民節(jié)日活動,組織了“迎新春”象棋大賽,已知報名的選手情況統(tǒng)計如下表:

組別

總計

中年組

91

老年組

16

已知中年組女性選手人數(shù)是僅比老年組女性選手人數(shù)多2人,若對中年組和老年組分別利用分層抽樣的方法抽取部分報名者參加比賽,已知老年組抽取了5人,其中女性3人,中年組抽取了7人.

(1)求表格中的數(shù)據(jù);

(2)若從選出的中年組的選手中隨機抽取兩名進行比賽,求至少有一名女性選手的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來全國各一、二線城市打擊投機購房,陸續(xù)出臺了住房限購令.某市為了進一步了解已購房民眾對市政府出臺樓市限購令的認同情況,隨機抽取了一小區(qū)住戶進行調(diào)查,各戶人均月收入(單位:千元)的頻數(shù)分布及贊成樓市限購令的戶數(shù)如下表:

人均月收入

頻數(shù)

6

10

13

11

8

2

贊成戶數(shù)

5

9

12

9

4

1

若將小區(qū)人均月收入不低于7.5千元的住戶稱為“高收入戶”,人均月收入低于7.5千元的住戶稱為“非高收入戶”

非高收入戶

高收入戶

總計

贊成

不贊成

總計

(Ⅰ)求“非高收入戶”在本次抽樣調(diào)杳中的所占比例;

(Ⅱ)現(xiàn)從月收入在的住戶中隨機抽取兩戶,求所抽取的兩戶都贊成樓市限購令的概率;

)根據(jù)已知條件完成如圖所給的列聯(lián)表,并說明能否在犯錯誤的概率不超過0.005的前提下認為“收入的高低”與“贊成樓市限購令”有關(guān).

附:臨界值表

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式: , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的函數(shù)滿足:對任意的實數(shù),存在非零常數(shù),都有成立.

(1)若函數(shù),求實數(shù)的值;

(2)當, 求函數(shù)在閉區(qū)間上的值域;

(3)設(shè)函數(shù)的值域為,證明:函數(shù)為周期函數(shù).

查看答案和解析>>

同步練習(xí)冊答案