【題目】2019年電商“雙十一”大戰(zhàn)即將開始.某電商為了盡快占領(lǐng)市場,搶占今年“雙十一”的先機,對成都地區(qū)年齡在15到75歲的人群“是否網(wǎng)上購物”的情況進(jìn)行了調(diào)查,隨機抽取了100人,其年齡頻率分布表和使用網(wǎng)上購物的人數(shù)如下所示:(年齡單位:歲)
年齡段 | ||||||
頻率 | 0.1 | 0.32 | 0.28 | 0.22 | 0.05 | 0.03 |
購物人數(shù) | 8 | 28 | 24 | 12 | 2 | 1 |
(1)若以45歲為分界點,根據(jù)以上統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.001的前提下認(rèn)為“網(wǎng)上購物”與年齡有關(guān)?
年齡低于45歲 | 年齡不低于45歲 | 總計 | |
使用網(wǎng)上購物 | |||
不使用網(wǎng)上購物 | |||
總計 |
(2)若從年齡在的樣本中隨機選取2人進(jìn)行座談,求選中的2人中恰好有1人“使用網(wǎng)上購物”的概率.
參考數(shù)據(jù):
0.025 | 0.010 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
參考公式:.
【答案】(1)列聯(lián)表見解析,可以在犯錯誤的概率不超過0.001的前提下認(rèn)為“使用網(wǎng)上購物”與年齡有關(guān)
(2)
【解析】
(1)由已知表格可得列聯(lián)表中需要的數(shù)據(jù),根據(jù)公式計算可得結(jié)論;
(2)5人中有2人參與網(wǎng)購,求出任選2人的方法總數(shù)及所求事件的方法數(shù)后可得概率.
解:(1)由統(tǒng)計表可得,低于45歲人數(shù)為70人,不低于45歲人數(shù)為30人,可得列聯(lián)表如下:
年齡低于45歲 | 年齡不低于45歲 | 總計 | |
使用網(wǎng)上購物 | 60 | 15 | 75 |
不使用網(wǎng)上購物 | 10 | 15 | 25 |
總計 | 70 | 30 | 100 |
于是有的觀測值.
故可以在犯錯誤的概率不超過0.001的前提下認(rèn)為“使用網(wǎng)上購物”與年齡有關(guān).
(2)由題意可知,基本事件的總數(shù)為10.
記事件為:選中的2人中恰好有1人“使用網(wǎng)上購物”.
所包含的基本事件的總數(shù)為6.
∴.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】要得到的圖象,只要將圖象怎樣變化得到( )
A.將的圖象沿x軸方向向左平移個單位
B.將的圖象沿x軸方向向右平移個單位
C.先作關(guān)于x軸對稱圖象,再將圖象沿x軸方向向右平移個單位
D.先作關(guān)于x軸對稱圖象,再將圖象沿x軸方向向左平移個單位
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)在區(qū)間有唯一零點,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線:的焦點為,準(zhǔn)線為,,以為圓心的圓與相切于點,的縱坐標(biāo)為,是圓與軸的不同于的一個交點.
(1)求拋物線與圓的方程;
(2)過且斜率為的直線與交于,兩點,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C:y=,D為直線y=上的動點,過D作C的兩條切線,切點分別為A,B.
(1)證明:直線AB過定點:
(2)若以E(0,)為圓心的圓與直線AB相切,且切點為線段AB的中點,求四邊形ADBE的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已如橢圓E:()的離心率為,點在E上.
(1)求E的方程:
(2)斜率不為0的直線l經(jīng)過點,且與E交于P,Q兩點,試問:是否存在定點C,使得?若存在,求C的坐標(biāo):若不存在,請說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,橢圓C:的離心率是,拋物線E:的焦點F是C的一個頂點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)P是E上的動點,且位于第一象限,E在點P處的切線與C交與不同的兩點A,B,線段AB的中點為D,直線OD與過P且垂直于x軸的直線交于點M.
(i)求證:點M在定直線上;
(ii)直線與y軸交于點G,記的面積為,的面積為,求的最大值及取得最大值時點P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐的所有頂點都在球的球面上,平面,,,若球的表面積為,則三棱錐的側(cè)面積的最大值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)下列條件求方程.
(1)已知頂點的坐標(biāo)為,求外接圓的方程;
(2)若過點的直線被圓所截的弦長為,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com