某學生參加某高校的自主招生考試,須依次參加A、B、C、D、E五項考試,如果前四項中有兩項不合格或第五項不合格,則該考生就被淘汰,考試即結束;考生未被淘汰時,一定繼續(xù)參加后面的考試。已知每一項測試都是相互獨立的,該生參加A、B、C、D四項考試不合格的概率均為,參加第五項不合格的概率為
(1)求該生被錄取的概率;
(2)記該生參加考試的項數(shù)為,求的分布列和期望.

(1)P=(2)


2
3
4
5





解析試題分析:(1)若該生被錄取,則前四項最多有一項不合格,并且第五項必須合格
記A={前四項均合格},B={前四項中僅有一項不合格}
P(A)=                      2分
P(B)=                  4分
又A、B互斥,故所求概率為
P=P(A)+P(B)=                               5分
(2)該生參加考試的項數(shù)可以是2,3,4,5.
 
,         9分


2
3
4
5





             10分
                               12分
考點:本題考查了隨機變量的概率與期望
點評:本題考查了隨機事件的概率及隨機變量的分布列、期望的綜合運用,考查了學生的計算能力及解決實際問題的能力,掌握求分布列的步驟及期望公式是解決此類問題的關鍵

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(1)從1,2,3,4,5五個數(shù)中依次取2個數(shù),求這兩個數(shù)的差的絕對值等于1的概率;
(2)△ABC中,∠B=60°,∠C=45°,高AD=,在BC邊上任取一點M,求 的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某品牌汽車4S店對最近100位采用分期付款的購車者進行統(tǒng)計,統(tǒng)計結果如下表所示:

付款方式
分1期
分2期
分3期
分4期
分5期
頻數(shù)
40
20

10

已知分3期付款的頻率為0.2,4s店經(jīng)銷一輛該品牌的汽車,顧客分1期付款,其利潤為1萬元,分2期或3期付款其利潤為1.5萬元,分4期或5期付款,其利潤為2萬元,用Y表示經(jīng)銷一輛汽車的利潤。
(Ⅰ)求上表中的值;
(Ⅱ)若以頻率作為概率,求事件:“購買該品牌汽車的3位顧客中,至多有一位采用3期付款”的概率;
(Ⅲ)求Y的分布列及數(shù)學期望EY

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某校設計了一個實驗考查方案:考生從道備選題中一次性隨機抽取道題,按照題目要求獨立完成全部實驗操作.規(guī)定:至少正確完成其中道題的便可通過.已知道備選題中考生甲有道題能正確完成,道題不能完成;考生乙每題正確完成的概率都是,且每題正確完成與否互不影響.
(1)求甲、乙兩考生正確完成題數(shù)的概率分布列,并計算其數(shù)學期望;
(2)請分析比較甲、乙兩考生的實驗操作能力.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

張師傅駕車從公司開往火車站,途徑4個公交站,這四個公交站將公司到火車站
分成5個路段,每個路段的駕車時間都是3分鐘,如果遇到紅燈要停留1分鐘,假設他在各
交通崗是否遇到紅燈是相互獨立的,并且概率都是
(1)求張師傅此行時間不少于16分鐘的概率
(2)記張師傅此行所需時間為Y分鐘,求Y的分布列和均值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

為了參加貴州省高中籃球比賽,某中學決定從四個籃球較強的班級的籃球隊員中選出人組成男子籃球隊,代表該地區(qū)參賽,四個籃球較強的班級籃球隊員人數(shù)如下表:

班級
高三()班
高三()班
高二()班
高二()班
人數(shù)
12
6
9
9
(Ⅰ)現(xiàn)采取分層抽樣的方法從這四個班中抽取運動員,求應分別從這四個班抽出的隊員人數(shù);
(Ⅱ)該中學籃球隊奮力拼搏,獲得冠軍.若要從高三年級抽出的隊員中選出兩位隊員作為冠軍的代表發(fā)言,求選出的兩名隊員來自同一班的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知甲盒內(nèi)有大小相同的1個紅球和3個黑球,乙盒內(nèi)有大小相同的2個紅球和4個黑球,現(xiàn)從甲、乙兩個盒內(nèi)各任取2個球.
(Ⅰ)求取出的4個球中恰有1個紅球的概率;
(Ⅱ)設“從甲盒內(nèi)取出的2個球恰有1個為黑球”為事件A;“從乙盒內(nèi)取出的2個球都是黑球”為事件B,求在事件A發(fā)生的條件下,事件B發(fā)生的概率;
(Ⅲ)設為取出的4個球中紅球的個數(shù),求的分布列和數(shù)學期望。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知箱中裝有4個白球和5個黑球,且規(guī)定:取出一個白球的2分,取出一個黑球的1分.現(xiàn)從該箱中任取(無放回,且每球取到的機會均等)3個球,記隨機變量X為取出3球所得分數(shù)之和.
(Ⅰ)求X的分布列;
(Ⅱ)求X的數(shù)學期望E(X).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題10分)某校高三某班的一次數(shù)學測試成績(滿分為100分)的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如下,據(jù)此解答如下問題:

(1)求分數(shù)在[50,60)的頻率及全班人數(shù);(2)求分數(shù)在[80,90)之間的頻數(shù),并計算頻率分布直方圖中[80,90)間的矩形的高;(3)若要從分數(shù)在[80,100]之間的試卷中任取兩份分析學生失分情況,在抽取的試卷中,求分數(shù)在[90,100]之間的份數(shù)的數(shù)學期望

查看答案和解析>>

同步練習冊答案