【題目】已知函數(shù)且.
當時,函數(shù)恒有意義,求實數(shù)的取值范圍;
是否存在這樣的實數(shù),使得函數(shù)在區(qū)間上為減函數(shù),并且最大值為1?如果存在,試求出的值;如果不存在,請說明理由.
【答案】(1)設是減函數(shù),
又時,有意義
且
的取值范圍是
(2)假設存在實數(shù),滿足題設條件,在區(qū)間上單調遞減函數(shù),且是減函數(shù), 由已知即
但 這樣的實數(shù)不存在
【解析】
試題(1)根據(jù)對數(shù)函數(shù)的定義,可知且,時,顯然符合,時,由分離參數(shù)得,右邊函數(shù)在上單調遞減,故,故;(2)假設存在符合題設條件的實數(shù),根據(jù)復合函數(shù)單調性可知,由(1)知,由的最大值為,與不符,故不存在.
試題解析:
(1)當時,由函數(shù)恒有定義知恒成立,即,
∴,又且,∴實數(shù)的取值范圍為;
(2)假設存在符合題設條件的實數(shù),則函數(shù)在區(qū)間上為減函數(shù),且是減函數(shù),
∴,又在上恒為正,則,故,由的最大值為,與不符,故不存在符合題設條件的實數(shù).
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐S﹣ABC中,側面SAB與側面SAC均為等邊三角形,∠BAC=90°,O為BC中點. (Ⅰ)證明:SO⊥平面ABC;
(Ⅱ)求二面角A﹣SC﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一臺機器按不同的轉速生產(chǎn)出來的某機械零件有一些會有缺點,每小時生產(chǎn)有缺點零件的多少,隨機器的運轉的速度而變化,具有線性相關關系,下表為抽樣試驗的結果:
轉速(轉/秒) | 8 | 10 | 12 | 14 | 16 |
每小時生產(chǎn)有缺點的零件數(shù)(件) | 5 | 7 | 8 | 9 | 11 |
(1)如果對有線性相關關系,求回歸方程;
(2)若實際生產(chǎn)中,允許每小時生產(chǎn)的產(chǎn)品中有缺點的零件最多有1個,那么機器的運轉速度應控制在什么范圍內?參考公式:, .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在亞丁灣海域執(zhí)行護航任務的中國海軍“徐州”艦,在A處收到某商船在航行中發(fā)出求救信號后,立即測出該商船在方位角方位角(是從某點的指北方向線起,依順時針方向到目標方向線之間的水平夾角)為45°、距離A處為10 n mile的C處,并測得該船正沿方位角為105°的方向,以9 n mile/h的速度航行,“徐州”艦立即以21 n mile/h的速度航行前去營救.
(1)“徐州”艦最少需要多少時間才能靠近商船?
(2)在營救時間最少的前提下,“徐州”艦應按照怎樣的航行方向前進?(角度精確到0.1°,時間精確到1min,參考數(shù)據(jù):sin68.2°≈0.9286)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C:,直線:.
(1)若直線被圓C截得的弦長為 ,求實數(shù)的值;
(2)當t =1時,由直線上的動點P引圓C的兩條切線,若切點分別為A,B,則直線AB是否恒過一個定點?若存在,求出該定點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在邊長為3的正三角形ABC中,E、F、P分別是AB、AC、BC邊上的點,滿足AE:EB=CF:FA=CP:PB=1:2(如圖(1)將△AEF沿EF折起到△A1EF的位置,使二面角A1﹣EF﹣B成直二面角,連結A1B、A1P(如圖(2)).
(1)求證:A1E⊥平面BEP;
(2)求二面角B﹣A1P﹣E的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校為了分析本校高中生的性別與是否喜歡數(shù)學之間的關系,在高中生中隨機地抽取了90名學生調查,得到了如下列聯(lián)表:
喜歡數(shù)學 | 不喜歡數(shù)學 | 總計 | |
男 | 30 | ① | 45 |
女 | ② | 25 | 45 |
總計 | ③ | ④ | 90 |
(1)求①②③④處分別對應的值;
(2)能有多大把握認為“高中生的性別與喜歡數(shù)學”有關?
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面是菱形,,為等邊三角形,是線段上的一點,且平面.
(1)求證:為的中點;
(2)若為的中點,連接,,,,平面平面,,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f (x)=ex+2x2-3x.
(1)求證:函數(shù)f (x)在區(qū)間[0,1]上存在唯一的極值點.
(2)當x≥時,若關于x的不等式f (x)≥ x2+(a-3)x+1恒成立,試求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com