【題目】已知函數(shù),直線的方程為.

(1)若直線是曲線的切線,求證: 對任意成立;

(2)若對任意恒成立,求實數(shù)是應滿足的條件.

【答案】(1)見解析;(2).

【解析】試題分析:(1)根據(jù)切線的方程,寫出斜率和截距,構造新函數(shù),對新函數(shù)求導,得到在x(-∞,t)上單調(diào)遞減,在x(t,+∞)為單調(diào)遞增,即得到函數(shù)的最小值,根據(jù)函數(shù)思想得到不等式成立.
(2)構造新函數(shù),對新函數(shù)求導,判斷函數(shù)的單調(diào)性,針對于k的不同值,函數(shù)的單調(diào)性不同,需要進行討論,求出函數(shù)的最小值,得到要寫的條件.

試題解析:

(1)因為,設切點為, 所以,

所以直線的方程為: ,

令函數(shù),

所以單調(diào)遞減,在單調(diào)遞增,

所以

,

對任意成立.

(2)令

①當時, ,則單調(diào)遞增,

所以

,符合題意.

②當時, 上單調(diào)遞減,在單調(diào)遞增,

所以

綜上所述:滿足題意的條件是

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】古代數(shù)學名著《九章算術》中的“盈不足”問題知兩鼠穿垣.今有垣厚5尺,兩鼠對穿.大鼠日一尺,小鼠亦一尺.大鼠日自倍,小鼠日自半.問:何日相逢?題意是:由垛厚五尺(舊制長度單位, 尺= 寸)的墻壁,大小兩只老鼠同時從墻的兩面,沿一直線相對打洞.大鼠第一天打進尺,以后每天的速度為前一天的倍;小鼠第一天也打進尺,以后每天的進度是前一天的一半.它們多久可以相遇?

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中,內(nèi)角, , 的對邊分別為 , ,已知,

1的值;

2,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π,x∈R)在一個周期內(nèi)的圖象如圖所示,則函數(shù)的解析式為 . 直線y= 與函數(shù)y=f(x)(x∈R)圖象的所有交點的坐標為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知中心在原點的雙曲線C的右焦點為(2,0),右頂點為( ,0)
(1)求雙曲線C的方程;
(2)若直線l:y=kx+ 與雙曲線C恒有兩個不同的交點A和B,且 >2(其中O為原點).求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】△ABC的外接圓半徑R= ,角A,B,C的對邊分別是a,b,c,且 =
(1)求角B和邊長b;
(2)求SABC的最大值及取得最大值時的a,c的值,并判斷此時三角形的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年空氣質(zhì)量逐步霧霾天氣現(xiàn)象增多,大氣污染危害加重,大氣污染可引起心悸,呼吸困難等心肺疾病,為了解某市心肺疾病是否與性別有關,在某醫(yī)院隨機的對入院50人進行了問卷調(diào)查得到了如下的列聯(lián)表:

患心肺疾病

不患心肺疾病

合計

5

10

合計

50

已知在全部50人中隨機抽取1人,抽到患心肺疾病的人的概率為.

(1)請將上面的列聯(lián)表補充完整,并判斷是否有99.5%的把握認為患心肺疾病與性別有關?說明你的理由;

(2)已知在患心肺疾病的10位女性中,有3位又患胃病,現(xiàn)在從患心肺疾病的10位女性中,選出3名進行其他方面的排查,記選出患胃病的女性人數(shù)為,求的分布列、數(shù)學期望及方差,下面的臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】等比數(shù)列{an}的前n項和為Sn , 已知S1 , S3 , S2成等差數(shù)列,
(1)求{an}的公比q;
(2)求a1﹣a3=3,求Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將一顆質(zhì)地均勻的骰子(一種各個面上分別標有1,2,3,4,5,6個點的正方體玩具)先后拋擲2次,則出現(xiàn)向上的點數(shù)之和小于10的概率是

查看答案和解析>>

同步練習冊答案