【題目】中,內(nèi)角 , 的對邊分別為 , ,已知

1的值;

2,求的面積.

【答案】(1) (2)

【解析】試題分析:(1)利用同角三角函數(shù)間的基本關系求出sinA的值,再將已知等式的左邊sinB中的角B利用三角形的內(nèi)角和定理變形為π﹣(A+C),利用誘導公式得到sinB=sin(A+C),再利用兩角和與差的正弦函數(shù)公式化簡,整理后利用同角三角函數(shù)間的基本關系即可求出tanC的值;

(2)由tanC的值,利用同角三角函數(shù)間的基本關系求出cosC的值,再利用同角三角函數(shù)間的基本關系求出sinC的值,將sinC的值代入中,即可求出sinB的值,由a,sinAsinC的值,利用正弦定理求出c的值,最后由a,c及sinB的值,利用三角形的面積公式即可求出三角形ABC的面積.

試題解析:

(1)∵,

,

整理得:

(2)由知:

又由正弦定理知:,故c===.①

對角A運用余弦定理:.②

解①②得:(舍去)

∴△ABC的面積為:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,內(nèi)角A、B、C對應的邊長分別為a、b、c.已知acosB﹣ b=
(1)求角A;
(2)若a= ,求b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中, 平面, 的中點, , , .

(1)求證:

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】求過兩點A(1,4)、B(3,2),且圓心在直線y=0上的圓的標準方程.并判斷點M1(2,3),M2(2,4)與圓的位置關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱柱中,側棱底面 , ,且點分別為的中點.

1)求證: 平面

2求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C對的邊分別為a,b,c,且c=2,C=60°.
(1)求 的值;
(2)若a+b=ab,求△ABC的面積SABC

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若,求函數(shù)的極值;

2)若, , ,使得),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),直線的方程為.

(1)若直線是曲線的切線,求證: 對任意成立;

(2)若對任意恒成立,求實數(shù)是應滿足的條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是雙曲線的左右焦點,以為直徑的圓與雙曲線的一條漸近線交于點,與雙曲線交于點,且均在第一象限,當直線時,雙曲線的離心率為,若函數(shù),則()

A. 1 B. C. 2 D.

查看答案和解析>>

同步練習冊答案