【題目】設(shè)函數(shù)f(x)=sin(ωx+φ)+cos(ωx+φ) 的最小正周期為π,且f(﹣x)=f(x),則( )
A.f(x)在 單調(diào)遞減
B.f(x)在( , )單調(diào)遞減
C.f(x)在(0, )單調(diào)遞增
D.f(x)在( , )單調(diào)遞增
【答案】A
【解析】解:由于f(x)=sin(ωx+)+cos(ωx+)= ,
由于該函數(shù)的最小正周期為T(mén)= ,得出ω=2,
又根據(jù)f(﹣x)=f(x),得φ+ = +kπ(k∈Z),以及|φ|< ,得出φ= .
因此,f(x)= cos2x,
若x∈ ,則2x∈(0,π),從而f(x)在 單調(diào)遞減,
若x∈( , ),則2x∈( , ),
該區(qū)間不為余弦函數(shù)的單調(diào)區(qū)間,故B,C,D都錯(cuò),A正確.
故選A.
【考點(diǎn)精析】掌握正弦函數(shù)的單調(diào)性是解答本題的根本,需要知道正弦函數(shù)的單調(diào)性:在上是增函數(shù);在上是減函數(shù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(理)如圖,在正方體ABCD﹣A1B1C1D1中,點(diǎn)O為線段BD的中點(diǎn).設(shè)點(diǎn)P在線段CC1上,直線OP與平面A1BD所成的角為α,則sinα的取值范圍是( )
A.[ ,1]
B.[ ,1]
C.[ , ]
D.[ ,1]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合{φ|f(x)=sin[(x﹣2φ)π]+cos[(x﹣2φ)π]為奇函數(shù),且|logaφ|<1}的子集個(gè)數(shù)為4,則a的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列函數(shù)中既是奇函數(shù)又是增函數(shù)的是( )
A.y=x3+x
B.y=logax
C.y=3x
D.y=﹣
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,cosA=﹣ ,cosB= ,
(1)求sinA,sinB,sinC的值
(2)設(shè)BC=5,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(ω>0,0<φ< )的部分圖象如圖所示.
(1)求f(x)的解析式;
(2)將函數(shù)y=f(x)的圖象上所有點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)縮短為原來(lái)的 倍,再將所得函數(shù)圖象向右平移 個(gè)單位,得到函數(shù)y=g(x)的圖象,求g(x)的單調(diào)遞增區(qū)間;
(3)當(dāng)x∈[﹣ , ]時(shí),求函數(shù)y=f(x+ )﹣ f(x+ )的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)g(x)=ax2﹣2ax+1+b(a≠0,b<1),在區(qū)間[2,3]上有最大值4,最小值1,設(shè)f(x)= .
(1)求a,b的值;
(2)不等式f(2x)﹣k2x≥0在x∈[﹣1,1]上恒成立,求實(shí)數(shù)k的取值范圍;
(3)方程f(|2x﹣1|)+k( ﹣3)有三個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)P(2,0)及圓C:x2+y2﹣6x+4y+4=0.
(1)設(shè)過(guò)P直線l1與圓C交于M、N兩點(diǎn),當(dāng)|MN|=4時(shí),求以MN為直徑的圓Q的方程;
(2)設(shè)直線ax﹣y+1=0與圓C交于A,B兩點(diǎn),是否存在實(shí)數(shù)a,使得過(guò)點(diǎn)P(2,0)的直線l2垂直平分弦AB?若存在,求出實(shí)數(shù)a的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知半徑為 ,圓心在直線l1:x﹣y+1=0上的圓C與直線l2: x﹣y+1﹣ =0相交于M,N兩點(diǎn),且|MN|=
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)當(dāng)圓心C的橫、縱坐標(biāo)均為整數(shù)時(shí),若對(duì)任意m∈R,直線l3:mx﹣y+ +1=0與圓C恒有公共點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com