【題目】已知函數(shù)在處取得極小值10,則的值為__________.
【答案】-2
【解析】∵f(x)=x3+ax2+bx﹣a2﹣7a,
∴f′(x)=3x2+2ax+b,
又f(x)=x3+ax2+bx﹣a2﹣7a在x=1處取得極小值10,
∴f′(1)=3+2a+b=0,f(1)=1+a+b﹣a2﹣7a=10,
∴a2+8a+12=0,
∴a=﹣2,b=1或a=﹣6,b=9.
當(dāng)a=﹣2,b=1時,f′(x)=3x2﹣4x+1=(3x﹣1)(x﹣1),
當(dāng)<x<1時,f′(x)<0,當(dāng)x>1時,f′(x)>0,
∴f(x)在x=1處取得極小值,與題意符合;
當(dāng)a=﹣6,b=9時,f′(x)=3x2﹣12x+9=3(x﹣1)(x﹣3)
當(dāng)x<1時,f′(x)>0,當(dāng)1<x<3時,f′(x)<0,
∴f(x)在x=1處取得極大值,與題意不符;
∴=﹣2,
故答案為:﹣2.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2x+log2x+b在區(qū)間( ,4)上有零點,則實數(shù)b的取值范圍是( )
A.(﹣10,0)
B.(﹣8,1)
C.(0,10)
D.(1,12)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個班級共有105名學(xué)生,某次數(shù)學(xué)考試按照“大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀”的原則統(tǒng)計成績后,得到如下列聯(lián)表。
優(yōu)秀 | 非優(yōu)秀 | 總計 | |
甲班 | 10 | ||
乙班 | 30 | ||
總計 | 105 |
已知從甲、乙兩個班級中隨機抽取1名學(xué)生,其成績?yōu)閮?yōu)秀的概率為.
(1)請完成上面的列聯(lián)表;
(2)能否有把握認(rèn)為成績與班級有關(guān)系?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】響應(yīng)“文化強國建設(shè)”號召,某市把社區(qū)圖書閱覽室建設(shè)增列為重要的民生工程.為了解市民閱讀需求,隨機抽取市民200人做調(diào)查,統(tǒng)計顯示,男士喜歡閱讀古典文學(xué)的有64人,不喜歡的有56人;女士喜歡閱讀古典文學(xué)的有36人,不喜歡的有44人.
(1)能否在犯錯誤的概率不超過0.25的前提下認(rèn)為喜歡閱讀古典文學(xué)與性別有關(guān)系?
(2)為引導(dǎo)市民積極參與閱讀,有關(guān)部門牽頭舉辦市讀書交流會,從這200人中篩選出5名男代表和4名代表,其中有3名男代表和2名女代表喜歡古典文學(xué).現(xiàn)從這9名代表中任選3名男代表和2名女代表參加交流會,記為參加交流會的5人中喜歡古典文學(xué)的人數(shù),求的分布列及數(shù)學(xué)期望.
附:,其中.
參考數(shù)據(jù):
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小學(xué)為迎接校運動會的到來,在三年級招募了16名男志愿者和14名女志愿者.調(diào)查發(fā)現(xiàn),男、女志愿者中分別各有10人和6人喜歡運動,其余人員不喜歡運動.
(1)根據(jù)以上數(shù)據(jù)完成2×2列聯(lián)表,并說明是否有95%的把握認(rèn)為性別與喜歡運動有關(guān);
喜歡運動 | 不喜歡運動 | 總計 | |
男 | |||
女 | |||
總計 |
(2)如果喜歡運動的女志愿者中恰有4人懂得醫(yī)療救護(hù),現(xiàn)從喜歡運動的女志愿者中抽取2名負(fù)責(zé)處理應(yīng)急事件,求抽出的2名志愿者都懂得醫(yī)療救護(hù)的概率.
附:K2=,
P(K2≥k0) | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,已知4sin2 .
(1)求角C的大。
(2)若c= ,求a﹣b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(附加題,本小題滿分10分,該題計入總分)
已知函數(shù),若在區(qū)間內(nèi)有且僅有一個,使得成立,則稱函數(shù)具有性質(zhì).
(1)若,判斷是否具有性質(zhì),說明理由;
(2)若函數(shù)具有性質(zhì),試求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C經(jīng)過點(3,6)且焦點在x軸上.
(1)求拋物線C的標(biāo)準(zhǔn)方程;
(2)直線l: 過拋物線C的焦點F且與拋物線C交于A,B兩點,求A,B兩點間的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com