【題目】已知拋物線C經(jīng)過(guò)點(diǎn)(3,6)且焦點(diǎn)在x軸上.

(1)求拋物線C的標(biāo)準(zhǔn)方程;

(2)直線l 過(guò)拋物線C的焦點(diǎn)F且與拋物線C交于A,B兩點(diǎn),求A,B兩點(diǎn)間的距離.

【答案】(1)y212x.(2)24.

【解析】試題分析:

(1)很明顯拋物線開(kāi)口向右,設(shè)所求拋物線為y22px(p>0)利用待定系數(shù)法可得拋物線方程為y212x.

(2)(1)F(3,0),據(jù)此可得l的方程為yx3,聯(lián)立直線方程與拋物線方程可得x218x90,結(jié)合韋達(dá)定理和拋物線的焦點(diǎn)弦公式可得|AB|x1x2624.

試題解析:

(1)很明顯拋物線開(kāi)口向右,設(shè)所求拋物線為y22px(p>0),

代入點(diǎn)(3,6),得p6.

∴拋物線方程為y212x.

(2)(1)F(3,0),代入直線l的方程得k1.

l的方程為yx3,聯(lián)立方程

消去yx218x90.

設(shè)A(x1y1),B(x2,y2),則x1x218.

AB過(guò)焦點(diǎn)F,|AB|x1x2624.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)處取得極小值10,則的值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)= ,若函數(shù)y=f(x)﹣kx恒有一個(gè)零點(diǎn),則k的取值范圍為(
A.k≤0
B.k≤0或k≥1
C.k≤0或k≥e
D.k≤0或k≥

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是直角梯形, , , , 平面, .

1)求證: 平面

2)求證: 平面;

3)若的中點(diǎn),求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓E: =1(a>b>0),傾斜角為45°的直線與橢圓相交于M、N兩點(diǎn),且線段MN的中點(diǎn)為(﹣1, ).過(guò)橢圓E內(nèi)一點(diǎn)P(1, )的兩條直線分別與橢圓交于點(diǎn)A、C和B、D,且滿(mǎn)足 ,其中λ為實(shí)數(shù).當(dāng)直線AP平行于x軸時(shí),對(duì)應(yīng)的λ=

(1)求橢圓E的方程;
(2)當(dāng)λ變化時(shí),kAB是否為定值?若是,請(qǐng)求出此定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)的性質(zhì)通常指函數(shù)的定義域、值域、周期性、單調(diào)性、奇偶性、對(duì)稱(chēng)性等,請(qǐng)選擇適當(dāng)?shù)奶骄宽樞,研究函?shù)的性質(zhì),并在此基礎(chǔ)上填寫(xiě)下表,作出fx)在區(qū)間[-π,2π]上的圖象.

性質(zhì)

理由

結(jié)論

得分

定義域

值域

奇偶性

周期性

單調(diào)性

對(duì)稱(chēng)性

作圖

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)與函數(shù)的圖象在點(diǎn)(0,0)處有相同的切線.

Ⅰ)求a的值;

Ⅱ)設(shè),求函數(shù)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2(lnx+lna)(a>0).
(1)當(dāng)a=1時(shí),設(shè)函數(shù)g(x)= ,求函數(shù)g(x)的單調(diào)區(qū)間與極值;
(2)設(shè)f′(x)是f(x)的導(dǎo)函數(shù),若 ≤1對(duì)任意的x>0恒成立,求實(shí)數(shù)a的取值范圍;
(3)若x1 , x2∈( ,1),x1+x2<1,求證:x1x2<(x1+x24

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知fx)是定義在(0,+∞)上的增函數(shù),且滿(mǎn)足fxy)=fx)+fy),f(2)=1.

(1)求f(8)的值;

(2)求不等式fx)-fx-2)>3的解集.

查看答案和解析>>

同步練習(xí)冊(cè)答案