【題目】如圖,在多面體中,四邊形是矩形,,,平面平面

1)若點(diǎn)是的中點(diǎn),求證:平面

2)求證:平面平面;

3)若,求直線(xiàn)與平面成角的正弦值.

【答案】1)見(jiàn)解析;(2)見(jiàn)解析;(3

【解析】

1)點(diǎn)中點(diǎn),易證四邊形是平行四邊形,從而,利用線(xiàn)面平行的判斷定理即可得到;(2)依題意,可證平面,利用面面垂直的判斷定理即可證得面;(3)首先證明,即為直線(xiàn)與平面成角,求出即可求出線(xiàn)面角的正弦值.

1)如圖,

∵點(diǎn)中點(diǎn),,

,

∴四邊形是平行四邊形,∴,

,,

2)∵平面平面,平面平面,

平面,

平面,∴面.

3)在直角梯形中,,

,

由(2)知平面,,

平面,∴,

又∵,∴,即為直線(xiàn)與平面成角,

又∵,∴,

∴直線(xiàn)與平面成角的正弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù))在上有兩個(gè)零點(diǎn),則的范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(1)若,求實(shí)數(shù)的取值范圍;

(2)設(shè)函數(shù)的極大值為,極小值為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知若,則稱(chēng)的原函數(shù),此時(shí)所有的原函數(shù)為,其中為常數(shù),如:,則為常數(shù)).現(xiàn)已知函數(shù)的導(dǎo)函數(shù)為且對(duì)任意的實(shí)數(shù)都有是自然對(duì)數(shù)的底數(shù)),且,若關(guān)于的不等式的解集中恰有兩個(gè)整數(shù),則實(shí)數(shù)的取值范圍是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)去大多數(shù)人采用儲(chǔ)蓄的方式將錢(qián)儲(chǔ)蓄起來(lái),以保證自己生活的穩(wěn)定,考慮到通貨膨脹的壓力,如果我們把所有的錢(qián)都用來(lái)儲(chǔ)蓄,這并不是一種很好的方式,隨著金融業(yè)的發(fā)展,普通人能夠使用的投資理財(cái)工具也多了起來(lái),為了研究某種理財(cái)工具的使用情況,現(xiàn)對(duì)年齡段的人員進(jìn)行了調(diào)查研究,將各年齡段人數(shù)分成組:,并整理得到頻率分布直方圖:

1)求圖中的值;

2)采用分層抽樣的方法,從第二組、第三組、第四組中共抽取人,則三個(gè)組中各抽取多少人?

3)在(2)中抽取的人中,隨機(jī)抽取人,則這人都來(lái)自于第三組的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在四棱錐中,底面為直角梯形,,為等邊三角形,平面平面,的中點(diǎn).

(1)證明:;

(2)求四面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年2月22日上午,山東省省委、省政府在濟(jì)南召開(kāi)山東省全面展開(kāi)新舊動(dòng)能轉(zhuǎn)換重大工程動(dòng)員大會(huì),會(huì)議動(dòng)員各方力量,迅速全面展開(kāi)新舊動(dòng)能轉(zhuǎn)換重大工程.某企業(yè)響應(yīng)號(hào)召,對(duì)現(xiàn)有設(shè)備進(jìn)行改造,為了分析設(shè)備改造前后的效果,現(xiàn)從設(shè)備改造前后生產(chǎn)的大量產(chǎn)品中各抽取了200件產(chǎn)品作為樣本,檢測(cè)一項(xiàng)質(zhì)量指標(biāo)值,若該項(xiàng)質(zhì)量指標(biāo)值落在內(nèi)的產(chǎn)品視為合格品,否則為不合格品.圖3是設(shè)備改造前的樣本的頻率分布直方圖,表1是設(shè)備改造后的樣本的頻數(shù)分布表.

表1:設(shè)備改造后樣本的頻數(shù)分布表

(1)完成下面的列聯(lián)表,并判斷是否有99%的把握認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標(biāo)值與設(shè)備改造有關(guān);

(2)根據(jù)圖3和表1提供的數(shù)據(jù),試從產(chǎn)品合格率的角度對(duì)改造前后設(shè)備的優(yōu)劣進(jìn)行比較;

(3)企業(yè)將不合格品全部銷(xiāo)毀后,根據(jù)客戶(hù)需求對(duì)合格品進(jìn)行等級(jí)細(xì)分,質(zhì)量指標(biāo)值落在內(nèi)的定為一等品,每件售價(jià)240元;質(zhì)量指標(biāo)值落在內(nèi)的定為二等品,每件售價(jià)180元;其它的合格品定為三等品,每件售價(jià)120元.根據(jù)表1的數(shù)據(jù),用該組樣本中一等品、二等品、三等品各自在合格品中的頻率代替從所有產(chǎn)品中抽到一件相應(yīng)等級(jí)產(chǎn)品的概率.現(xiàn)有一名顧客隨機(jī)購(gòu)買(mǎi)兩件產(chǎn)品,設(shè)其支付的費(fèi)用為(單位:元),求的分布列和數(shù)學(xué)期望.

附:

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(Ⅰ)若存在單調(diào)增區(qū)間,求的取值范圍;

(Ⅱ)是否存在實(shí)數(shù),使得方程在區(qū)間內(nèi)有且只有兩個(gè)不相等的實(shí)數(shù)根?若存在,求出的取值范圍?若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓,,分別是橢圓短軸的上下兩個(gè)端點(diǎn),是橢圓的左焦點(diǎn),P是橢圓上異于點(diǎn)的點(diǎn),若的邊長(zhǎng)為4的等邊三角形.

寫(xiě)出橢圓的標(biāo)準(zhǔn)方程;

當(dāng)直線(xiàn)的一個(gè)方向向量是時(shí),求以為直徑的圓的標(biāo)準(zhǔn)方程;

設(shè)點(diǎn)R滿(mǎn)足:,,求證:的面積之比為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案