【題目】某生態(tài)農(nóng)場(chǎng)有一矩形地塊,地塊內(nèi)有一半圓形池塘(如圖所示),其中百米,百米,半圓形池塘的半徑為1百米,圓心與線段的中點(diǎn)重合,半圓與的左側(cè)交點(diǎn)為.該農(nóng)場(chǎng)計(jì)劃分別在上各選一點(diǎn),修建道路,要求與半圓相切.

1)若,求該道路的總長(zhǎng);

2)若為觀光道路,修建費(fèi)用是4萬元/百米,為便道,修建費(fèi)用是1萬元/百米,求修建觀光道路與便道的總費(fèi)用的最小值.

【答案】1百米;(2萬元.

【解析】

1)利用圖中邊角關(guān)系,分別計(jì)算出的長(zhǎng)度,相加即可;

2)設(shè),的取值范圍是,可得修建觀光道路與便道的總費(fèi)用,利用導(dǎo)數(shù)求其最值即可.

1)因?yàn)?/span>,所以.

,

所以.

答:道路的總長(zhǎng)為百米.

2)設(shè).

若點(diǎn)與點(diǎn)重合,則;

若點(diǎn)與點(diǎn)重合,則,

所以由題意,的取值范圍是.

設(shè)切點(diǎn)為,連結(jié).

.

設(shè)修建觀光道路與便道的總費(fèi)用為萬元,則

.

設(shè)

.

,得,令,且.

列表如下:

-

0

+

極小值

所以當(dāng)時(shí),取得最小值.

所以.

答:修建觀光道路與便道的總費(fèi)用的最小值為萬元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,,平面,底面為正方形,且.若四棱錐的每個(gè)頂點(diǎn)都在球的球面上,則球的表面積的最小值為_____;當(dāng)四棱錐的體積取得最大值時(shí),二面角的正切值為_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某學(xué)校高三年級(jí)共1000名男生中隨機(jī)抽取50人測(cè)量身高,據(jù)測(cè)量,被測(cè)學(xué)生身高全部介于之間,將測(cè)量結(jié)果按如下方式分成八組:第一組,第二組,…,第八組.如圖是按上述分組方法得到的頻率分布直方圖的一部分.其中第六組、第七組、第八組人數(shù)依次構(gòu)成等差數(shù)列.

(1)求第六組、第七組的頻率,并估計(jì)高三年級(jí)全體男生身高在以上(含)的人數(shù);

(2)學(xué)校決定讓這五十人在運(yùn)動(dòng)會(huì)上組成一個(gè)高旗隊(duì),在這五十人中要選身高在以上(含)的兩人作為隊(duì)長(zhǎng),求這兩人在同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和為,已知,且對(duì)一切都成立.

(1)當(dāng)時(shí).

①求數(shù)列的通項(xiàng)公式;

②若,求數(shù)列的前項(xiàng)的和;

(2)是否存在實(shí)數(shù),使數(shù)列是等差數(shù)列.如果存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某少兒游泳隊(duì)需對(duì)隊(duì)員進(jìn)行限時(shí)的仰臥起坐達(dá)標(biāo)測(cè)試.已知隊(duì)員的測(cè)試分?jǐn)?shù)與仰臥起坐

個(gè)數(shù)之間的關(guān)系如下:;測(cè)試規(guī)則:每位隊(duì)員最多進(jìn)行三組測(cè)試,每組限時(shí)1分鐘,當(dāng)一組測(cè)完,測(cè)試成績(jī)達(dá)到60分或以上時(shí),就以此組測(cè)試成績(jī)作為該隊(duì)員的成績(jī),無需再進(jìn)行后續(xù)的測(cè)試,最多進(jìn)行三組;根據(jù)以往的訓(xùn)練統(tǒng)計(jì),隊(duì)員“喵兒”在一分鐘內(nèi)限時(shí)測(cè)試的頻率分布直方圖如下:

(1)計(jì)算值;

(2)以此樣本的頻率作為概率,求

①在本次達(dá)標(biāo)測(cè)試中,“喵兒”得分等于的概率;

②“喵兒”在本次達(dá)標(biāo)測(cè)試中可能得分的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C)的左右焦點(diǎn)分別為,,離心率為,橢圓C上的一點(diǎn)P,的距離之和等于4.

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)設(shè),過橢圓C的右焦點(diǎn)的直線與橢圓C交于A,B兩點(diǎn),若滿足恒成立,求m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商家統(tǒng)計(jì)了去年,兩種產(chǎn)品的月銷售額(單位:萬元),繪制了月銷售額的雷達(dá)圖,圖中點(diǎn)表示產(chǎn)品2月份銷售額約為20萬元,點(diǎn)表示產(chǎn)品9月份銷售額約為25萬元.

根據(jù)圖中信息,下面統(tǒng)計(jì)結(jié)論錯(cuò)誤的是(

A.產(chǎn)品的銷售額極差較大B.產(chǎn)品銷售額的中位數(shù)較大

C.產(chǎn)品的銷售額平均值較大D.產(chǎn)品的銷售額波動(dòng)較小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解某學(xué)校高二年級(jí)學(xué)生的物理成績(jī),從中抽取名學(xué)生的物理成績(jī)百分制作為樣本,按成績(jī)分成5組:,頻率分布直方圖如圖所示,成績(jī)落在中的人數(shù)為20

男生

女生

合計(jì)

優(yōu)秀

不優(yōu)秀

合計(jì)

1的值;

2根據(jù)樣本估計(jì)總體的思想,估計(jì)該校高二學(xué)生物理成績(jī)的平均數(shù)和中位數(shù)

3成績(jī)?cè)?0分以上含80分為優(yōu)秀,樣本中成績(jī)落在中的男、女生人數(shù)比為1:2,成績(jī)落在中的男、女生人數(shù)比為3:2,完成列聯(lián)表,并判斷是否所有95%的把握認(rèn)為物理成績(jī)優(yōu)秀與性別有關(guān)

參考公式和數(shù)據(jù):

050

005

0025

0005

0455

3841

5024

7879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)訄AM與直線相切,且與圓N外切

1)求動(dòng)圓圓心M的軌跡C的方程;

2)點(diǎn)O為坐標(biāo)原點(diǎn),過曲線C外且不在y軸上的點(diǎn)P作曲線C的兩條切線,切點(diǎn)分別記為A,B,當(dāng)直線的斜率之積為時(shí),求證:直線過定點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案