【題目】我國有一道古典數(shù)學(xué)名著——兩鼠穿墻:“今有垣厚十尺,兩鼠對穿,初日各一尺,大鼠日自倍,小鼠日自半,問幾何日相逢?”題意是:“有兩只老鼠從墻的兩邊打洞穿墻(連線與墻面垂直),大老鼠第一天進(jìn)一尺,以后每天加倍,小老鼠第一天也進(jìn)一尺,以后每天減半,那么兩鼠第幾天能見面.”假設(shè)墻厚16尺,如圖是源于該題思想的一個程序框圖,則輸出的( )

A. 3 B. 4 C. 5 D. 6

【答案】B

【解析】

由已知中的程序語句可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計算并輸出變量n的值,模擬程序的運行過程,分析循環(huán)中各變量值的變化情況,可得答案.

程序執(zhí)行第一次后,,執(zhí)行第二次后,,,執(zhí)行第3次后,, ,執(zhí)行第4次后,,跳出循環(huán),輸出,程序結(jié)束,故選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】100x25的長方形表格中每一格填入一個非負(fù)實數(shù),第行第列中填入的數(shù)為(如表 1)。然后將表1每列中的數(shù)按由大到小的次序從上到下重新排列為,。(如表2)求最小的自然數(shù)k,使得只要表1中填入的數(shù)滿足則當(dāng)i≥k時,在表2中就能保證成立。

1 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過點的直線與直線垂直.

1 ,且點在函數(shù)的圖象上,求直線的一般式方程;

2)若點在直線上,判斷直線是否經(jīng)過定點?若是,求出該定點的坐標(biāo);若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線與原點為圓心的圓相交所得弦長為.

(1)若直線與圓切于第一象限,且直線與坐標(biāo)軸交于點,當(dāng)面積最小時,求直線的方程;

(2)設(shè)是圓上任意兩點,點關(guān)于軸的對稱點為,若直線分別交于軸與點,問是否為定值?若是,請求處該定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列命題:

,不等式恒成立;

②若,則;

,則的逆否命題;

④若命題,命題,則命題是真命題.

其中,真命題為(

A.①③④B.①②C.①②③D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓 (a>b>0)的左焦點為F,上頂點為B. 已知橢圓的離心率為,A的坐標(biāo)為,.

I)求橢圓的方程;

II)設(shè)直線l 與橢圓在第一象限的交點為P,l與直線AB交于點Q. (O為原點) ,k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是矩形,側(cè)棱底面,點的中點.

求證:平面

若直線與平面所成角為,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近日,某地普降暴雨,當(dāng)?shù)匾淮笮吞釅伟l(fā)生了滲水現(xiàn)象,當(dāng)發(fā)現(xiàn)時已有的壩面滲水,經(jīng)測算,壩而每平方米發(fā)生滲水現(xiàn)象的直接經(jīng)濟(jì)損失約為元,且滲水面積以每天的速度擴(kuò)散.當(dāng)?shù)赜嘘P(guān)部門在發(fā)現(xiàn)的同時立即組織人員搶修滲水壩面,假定每位搶修人員平均每天可搶修滲水面積,該部門需支出服裝補貼費為每人元,勞務(wù)費及耗材費為每人每天元.若安排名人員參與搶修,需要天完成搶修工作.

寫出關(guān)于的函數(shù)關(guān)系式;

應(yīng)安排多少名人員參與搶修,才能使總損失最小.(總損失=因滲水造成的直接損失+部門的各項支出費用)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù),則下列結(jié)論錯誤的是( )

A. 是偶函數(shù) B. 的值域是

C. 方程的解只有 D. 方程的解只有

查看答案和解析>>

同步練習(xí)冊答案