【題目】定義:設(shè)上的可導(dǎo)函數(shù),若為增函數(shù),則稱(chēng)上的凸函數(shù).

(1)判斷函數(shù)是否為凸函數(shù);

(2)設(shè)上的凸函數(shù),求證:若, ,則恒有成立;

(3)設(shè) , ,求證: .

【答案】(1)不是, 是;(2)詳見(jiàn)解析(3)詳見(jiàn)解析

【解析】試題分析:(1)由函數(shù)的導(dǎo)函數(shù)是否為增函數(shù)可得(2)先證明n=2時(shí),不等式成立,再通過(guò)數(shù)學(xué)歸納法證明時(shí),不等式成立。(3)令 , ,即證:(成立,由(1)得為凸函數(shù),而,即證。

試題解析:(1)因?yàn)?/span>的導(dǎo)函數(shù)不是增函數(shù),所以不是凸函數(shù), 是;

(2)時(shí),即證: 時(shí),

不防設(shè), ,令

因?yàn)?/span>

時(shí)遞增函數(shù),所以,即為單調(diào)遞增函數(shù),

所以,即;

假設(shè)時(shí),結(jié)論成立,

, , , ,有成立,

時(shí), , , ,有

所以時(shí),結(jié)論也成立,

綜合以上可得,原結(jié)論成立.

(3)令 , ,即證:(

成立,

由(1)得為凸函數(shù),而,

,同理有:

,

成立,得證.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),若存在常數(shù),使得對(duì)任意,均有,則稱(chēng)為有界集合,同時(shí)稱(chēng)為集合的上界.

(1)設(shè)、,試判斷是否為有界集合,并說(shuō)明理由;

(2)已知,記).若,

,且為有界集合,求的值及的取值范圍;

(3)設(shè)均為正數(shù),將中的最小數(shù)記為.是否存在正數(shù),使得為有界集合, 均為正數(shù)的上界,若存在,試求的最小值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)f(x)=loga(x+ )是奇函數(shù),則a=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}滿(mǎn)足Sn+an=2n+1.
(1)寫(xiě)出a1 , a2 , a3 , 并推測(cè)an的表達(dá)式;
(2)用數(shù)學(xué)歸納法證明所得的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=ax﹣lnx,x∈(0,e],g(x)= ,其中e是自然常數(shù),a∈R.
(1)討論a=1時(shí),函數(shù)f(x)的單調(diào)性和極值;
(2)求證:在(1)的條件下,f(x)>g(x)+
(3)是否存在實(shí)數(shù)a使f(x)的最小值是3?若存在,求出a的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知e是自然對(duì)數(shù)的底數(shù),實(shí)數(shù)a,b滿(mǎn)足eb=2a﹣3,則|2a﹣b﹣1|的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù))與函數(shù)有公共切線.

(Ⅰ)求的取值范圍;

(Ⅱ)若不等式對(duì)于的一切值恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖所示程序框圖,若輸入a,b,i的值分別為6,4,1,則輸出a和i的值分別為(

A.2,4
B.3,4
C.2,5
D.2,6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)(噸),一位居民的月用水量不超過(guò)的部分按平價(jià)收費(fèi),超過(guò)的部分按議價(jià)收費(fèi).為了了解居民用水情況,通過(guò)抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照, , 分成9組,制成了如圖所示的頻率分布直方圖.

(Ⅰ)求直方圖中的值;

(Ⅱ)若將頻率視為概率,從該城市居民中隨機(jī)抽取3人,記這3人中月均用水量不低于3噸的人數(shù)為,求的分布列與數(shù)學(xué)期望.

(Ⅲ)若該市政府希望使85%的居民每月的用水量不超過(guò)標(biāo)準(zhǔn)(噸),估計(jì)的值(精確到0.01),并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案