【題目】在棱長(zhǎng)為1的正方體中,點(diǎn), 分別是側(cè)面與底面的中心,則下列命題中錯(cuò)誤的個(gè)數(shù)為( )
①平面; ②異面直線與所成角為;
③與平面垂直; ④.
A. 0 B. 1 C. 2 D. 3
【答案】A
【解析】對(duì)于①,∵DF,DF平面, 平面,∴平面,正確;
對(duì)于②,∵DF,∴異面直線與所成角即異面直線與所成角,△為等邊三角形,故異面直線與所成角為,正確;
對(duì)于③,∵⊥, ⊥CD,且CD=D,∴⊥平面,即⊥平面正確;
對(duì)于④,,正確,
故選:A
【題型】單選題
【結(jié)束】
8
【題目】已知函數(shù)在區(qū)間上單調(diào)遞增,則實(shí)數(shù)的取值范圍是( )
A. B. C. D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的一個(gè)焦點(diǎn)與上、下頂點(diǎn)構(gòu)成直角三角形,以橢圓的長(zhǎng)軸長(zhǎng)為直徑的圓與直線相切.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)過橢圓右焦點(diǎn)且不平行于軸的動(dòng)直線與橢圓相交于兩點(diǎn),探究在軸上是否存在定點(diǎn),使得為定值?若存在,試求出定值和點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E為BC的中點(diǎn),F在棱AC上,且AF=3FC
(1)求三棱錐D-ABC的體積
(2)求證:平面DAC⊥平面DEF;
(3)若M為DB中點(diǎn),N在棱AC上,且CN=CA,求證:MN∥平面DEF
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知坐標(biāo)平面上點(diǎn)與兩個(gè)定點(diǎn), 的距離之比等于5.
(1)求點(diǎn)的軌跡方程,并說明軌跡是什么圖形;
(2)記(1)中的軌跡為,過點(diǎn)的直線被所截得的線段的長(zhǎng)為8,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱 中, , , 是棱上的動(dòng)點(diǎn).
證明: ;
若平面分該棱柱為體積相等的兩個(gè)部分,試確定點(diǎn)的位置,并求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=
(1)若對(duì),f(x) 恒成立,求的取值范圍;
(2)已知常數(shù)aR,解關(guān)于x的不等式f(x) .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖 1,在直角梯形中, ,且.現(xiàn)以為一邊向形外作正方形,然后沿邊將正方形翻折,使平面與平面垂直, 為的中點(diǎn),如圖 2.
(1)求證: 平面;
(2)求證: 平面;
(3)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐A-BCDE中,底面BCDE為直角梯形,CD⊥平面ABC,側(cè)面ABC是等腰直角三角形,∠EBC=∠ABC=90°,BC=CD=2BE=2,點(diǎn)M是棱AD的中點(diǎn)
(I)證明:平面AED⊥平面ACD;
(Ⅱ)求銳二面角B-CM-A的余弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線過橢圓的右焦點(diǎn)且與橢圓交于兩點(diǎn), 為中點(diǎn), 的斜率為.
(1)求橢圓的方程;
(2)設(shè)是橢圓的動(dòng)弦,且其斜率為1,問橢圓上是否存在定點(diǎn),使得直線的斜率滿足?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com