【題目】(選做題)

A.[選修4-2:矩陣與變換](本小題滿分10分)

已知m,n∈R,向量是矩陣的屬于特征值3的一個(gè)特征向量,求矩陣M及另一個(gè)特征值.

B.[選修4-4:坐標(biāo)系與參數(shù)方程](本小題滿分10分)

在平面直角坐標(biāo)系xOy中,已知直線的參數(shù)方程為( t為參數(shù)),橢圓C的參數(shù)方程為.設(shè)直線與橢圓C交于A,B兩點(diǎn),求線段AB的長(zhǎng).

C.[選修4-5:不等式選講](本小題滿分10分)

已知x,y,z均是正實(shí)數(shù),且求證:

【答案】A:;BC:見解析

【解析】

A由矩陣的運(yùn)算求解即可;B.化直線的普通方程為,與橢圓聯(lián)立求得AB坐標(biāo),由弦長(zhǎng)公式求得AB的長(zhǎng);C.由柯西不等式證明即可

A.由題意得,

所以即矩陣.矩陣的特征多項(xiàng)式,

解得矩陣的另一個(gè)特征值為.

B.由題意得,直線的普通方程為.①

橢圓C的普通方程為.②

由①②聯(lián)立,解得AB,

所以

C.由柯西不等式得,

因?yàn)?/span>,所以

所以,當(dāng)且僅當(dāng)“”時(shí)取等號(hào).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線1(a0,b0)的左、右焦點(diǎn)分別為F1,F2,點(diǎn)O為雙曲線的中心,點(diǎn)P在雙曲線右支上,PF1F2內(nèi)切圓的圓心為Q,圓Qx軸相切于點(diǎn)A,過(guò)F2作直線PQ的垂線,垂足為B,則下列結(jié)論成立的是( )

A. |OA||OB|B. |OA||OB|

C. |OA||OB|D. |OA||OB|大小關(guān)系不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的焦距為分別為橢圓的左、右頂點(diǎn),為橢圓上的兩點(diǎn)(異于),連結(jié),且斜率是斜率的倍.

(1)求橢圓的方程;

(2)證明:直線恒過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地統(tǒng)計(jì)局調(diào)查了10000名居民的月收入,并根據(jù)所得數(shù)據(jù)繪制了樣本的頻率分布直方圖如圖所示。

(1)求居民月收入在[3000,3500)內(nèi)的頻率;

(2)根據(jù)頻率分布直方圖求出樣本數(shù)據(jù)的中位數(shù);

(3)為了分析居民的月收入與年齡、職業(yè)等方面的關(guān)系,必須按月收入再?gòu)倪@10000中用分層抽樣的方法抽出100人做進(jìn)一步分析,則應(yīng)從月收入在[2500,3000)內(nèi)的居民中抽取多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖①是一棟新農(nóng)村別墅,它由上部屋頂和下部主體兩部分組成.如圖②,屋頂由四坡屋面構(gòu)成,其中前后兩坡屋面ABFE和CDEF是全等的等腰梯形,左右兩坡屋面EAD和FBC是全等的三角形.點(diǎn)F在平面ABCD和BC上的射影分別為H,M.已知HM 5 m,BC 10 m,梯形ABFE的面積是△FBC面積的2.2倍.設(shè)∠FMH

(1)求屋頂面積S關(guān)于的函數(shù)關(guān)系式;

(2)已知上部屋頂造價(jià)與屋頂面積成正比,比例系數(shù)為k(k為正的常數(shù)),下部主體造價(jià)與其 高度成正比,比例系數(shù)為16 k.現(xiàn)欲造一棟上、下總高度為6 m的別墅,試問(wèn):當(dāng)為何值時(shí),總造價(jià)最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}中,a1=1,an+1=,(nN*

1)求數(shù)列{an}的通項(xiàng)公式an

2)若數(shù)列{bn}滿足bn=3n﹣1an,數(shù)列{bn}的前n項(xiàng)和為Tn,若不等式(﹣1nλTn對(duì)一切nN*恒成立,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在正三棱柱中,側(cè)棱長(zhǎng)3,H、G分別是AB,中點(diǎn).

1)證明:平面;

2)若,求此三棱柱的側(cè)面積;

3)若P為側(cè)棱上一點(diǎn),且,與平面所成角大小為,求此三棱柱的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2020年我國(guó)全面建成小康社會(huì),其中小康生活的住房標(biāo)準(zhǔn)是城鎮(zhèn)人均住房建筑面積30平方米. 下表為2007年—2016年中,我區(qū)城鎮(zhèn)和農(nóng)村人均住房建筑面積統(tǒng)計(jì)數(shù)據(jù). 單位:平方米.

2007年

2008年

2009年

2010年

2011年

2012年

2013年

2014年

2015年

2016年

城鎮(zhèn)

18.66

20.25

22.79

25

27.1

28.3

31.6

32.9

34.6

36.6

農(nóng)村

23.3

24.8

26.5

27.9

30.7

32.4

34.1

37.1

41.4

45.8

(1)現(xiàn)從上述表格中隨機(jī)抽取一年數(shù)據(jù),試估計(jì)該年城鎮(zhèn)人均住房建筑面積達(dá)到小康生活住房標(biāo)準(zhǔn)的概率;

(2)現(xiàn)從上述表格中隨機(jī)抽取連續(xù)兩年數(shù)據(jù),求這兩年中城鎮(zhèn)人均住房建筑面積增長(zhǎng)不少于2平方米的概率;

(3)將城鎮(zhèn)和農(nóng)村的人均住房建筑面積經(jīng)四舍五入取整后作為樣本數(shù)據(jù).記2012—2016年中城鎮(zhèn)人均住房面積的方差為,農(nóng)村人均住房面積的方差為 ,判斷的大。ㄖ恍鑼懗鼋Y(jié)論).

(注:方差 ,其中 ,…… 的平均數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)處取得極值.

求實(shí)數(shù)a的值;

若關(guān)于x的方程上恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)b的取值范圍;

證明:參考數(shù)據(jù):

查看答案和解析>>

同步練習(xí)冊(cè)答案