【題目】2019年全國掀起了垃圾分類的熱潮,垃圾分類已經(jīng)成為新時尚,同時帶動了垃圾桶的銷售.某垃圾桶生產(chǎn)和銷售公司通過數(shù)據(jù)分析,得到如下規(guī)律:每月生產(chǎn)只垃圾桶的總成本由固定成本和生產(chǎn)成本組成,其中固定成本為100萬元,生產(chǎn)成本為.

1)寫出平均每只垃圾桶所需成本關(guān)于的函數(shù)解析式,并求該公司每月生產(chǎn)多少只垃圾桶時,可使得平均每只所需成本費用最少?

2)假設(shè)該類型垃圾桶產(chǎn)銷平衡(即生產(chǎn)的垃圾桶都能賣掉),每只垃圾桶的售價為元,滿足.若當產(chǎn)量為15000只時利潤最大,此時每只售價為300元,試求的值.(利潤銷售收入成本費用)

【答案】1)每只的成本費用為250.2.

【解析】

1)由題意寫出生產(chǎn)成本的表達式,可得,利用基本不等式計算的最小值,并求出所對應(yīng)的的值;

2)由題意可得利潤函數(shù),結(jié)合題意列出方程,可得的值.

解:(1)由題意知,生產(chǎn)成本為,

所以.

當且僅當,即時,取得最小值250.

即該公司生產(chǎn)1萬只垃圾桶時,使得每只平均所需成本費用最少,且每只的成本費用為250.

2)由已知可得,利潤

.

因為當產(chǎn)量為15000只時利潤最大,此時每只售價為300元,

所以

解得,.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,是等邊三角形, 邊上的動點(含端點),記,.

(1)求的最大值;

(2)若,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動點滿足: .

1)求動點的軌跡的方程;

2)設(shè)過點的直線與曲線交于兩點,點關(guān)于軸的對稱點為(點與點不重合),證明:直線恒過定點,并求該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某社區(qū)消費者協(xié)會為了解本社區(qū)居民網(wǎng)購消費情況,隨機抽取了100位居民作為樣本,就最近一年來網(wǎng)購消費金額(單位:千元),網(wǎng)購次數(shù)和支付方式等進行了問卷調(diào)査.經(jīng)統(tǒng)計這100位居民的網(wǎng)購消費金額均在區(qū)間內(nèi),按,,,分成6組,其頻率分布直方圖如圖所示.

(1)估計該社區(qū)居民最近一年來網(wǎng)購消費金額的中位數(shù);

(2)將網(wǎng)購消費金額在20千元以上者稱為“網(wǎng)購迷”,補全下面的列聯(lián)表,并判斷有多大把握認為“網(wǎng)購迷與性別有關(guān)系”;

合計

網(wǎng)購迷

20

非網(wǎng)購迷

45

合計

100

(3)調(diào)査顯示,甲、乙兩人每次網(wǎng)購采用的支付方式相互獨立,兩人網(wǎng)購時間與次數(shù)也互不. 影響.統(tǒng)計最近一年來兩人網(wǎng)購的總次數(shù)與支付方式,所得數(shù)據(jù)如下表所示:

網(wǎng)購總次數(shù)

支付寶支付次數(shù)

銀行卡支付次數(shù)

微信支付次數(shù)

80

40

16

24

90

60

18

12

將頻率視為概率,若甲、乙兩人在下周內(nèi)各自網(wǎng)購2次,記兩人采用支付寶支付的次數(shù)之和為,求的數(shù)學期望.

附:觀測值公式:

臨界值表:

0.01

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)各項均為正數(shù)的數(shù)列{an}的前n項和為Sn,已知a11,且anSn+1an+1Snan+1λan,對一切nN*都成立.

1)當λ1時;

①求數(shù)列{an}的通項公式;

②若bn=(n+1an,求數(shù)列{bn}的前n項的和Tn;

2)是否存在實數(shù)λ,使數(shù)列{an}是等差數(shù)列如果存在,求出λ的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)().

1)若,求函數(shù)的單調(diào)區(qū)間;

2)當時,若函數(shù)上的最大值和最小值的和為1,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,若,且.

(Ⅰ)求動點的軌跡的方程;

(Ⅱ)設(shè)(Ⅰ)中曲線的左、右頂點分別為,過點的直線與曲線交于兩點(不與,重合).若直線與直線相交于點,試判斷點,,是否共線,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】201971日,《上海市生活垃圾管理條例》正式實施,生活垃圾要按照可回收物、有害垃圾、濕垃圾、干垃圾的分類標準進行分類,沒有垃圾分類和未投放到指定垃圾桶內(nèi)等會被罰款和行政處罰.若某上海居民提著廚房里產(chǎn)生的濕垃圾隨意地投放到樓下的垃圾桶,若樓下分別放有可回收物有害垃圾、濕垃圾、干垃圾四個垃圾桶,則該居民會被罰款和行政處罰的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,垂直圓O所在的平面,是圓O的一條直徑,C為圓周上異于AB的動點,D為弦的中點,.

1)證明:平面平面;

2)若,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

同步練習冊答案