橢圓G:的兩個(gè)焦點(diǎn)為F1F2,短軸兩端點(diǎn)B1、B2,已知F1、F2、B1、B2四點(diǎn)共圓,且點(diǎn)N(0,3)到橢圓上的點(diǎn)最遠(yuǎn)距離為

(1)求此時(shí)橢圓G的方程;

(2)設(shè)斜率為k(k≠0)的直線m與橢圓G相交于不同的兩點(diǎn)E、F,Q為EF的中點(diǎn),問EF兩點(diǎn)能否關(guān)于過點(diǎn)P(0,)、Q的直線對(duì)稱?若能,求出k的取值范圍;若不能,請(qǐng)說明理由.

答案:
解析:

  解:(1)根據(jù)橢圓的幾何性質(zhì),線段F1F2與線段B1B2互相垂直平分,故橢圓中心即為該四點(diǎn)外接圓的圓心  1分

  故該橢圓中即橢圓方程可為  3分

  設(shè)H(x,y)為橢圓上一點(diǎn),則

    4分

  若,則有最大值  5分

  由(舍去)(或b2+3b+9<27,故無解)  6分

  若  7分

  由∴所求橢圓方程為  8分

  (1)設(shè),則由

  兩式相減得、

  又直線PQ⊥直線m

  ∴直線PQ方程為

  將點(diǎn)Q()代入上式得,、堋 11分

  由③④得Q()  12分

  而Q點(diǎn)必在橢圓內(nèi)部,

  由此得,故當(dāng)

  時(shí),EF兩點(diǎn)關(guān)于點(diǎn)P、Q的直線對(duì)稱  14分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2011年四川省江油市高二上學(xué)期期中考試數(shù)學(xué)理卷 題型:解答題

橢圓G:的兩個(gè)焦點(diǎn)為是橢圓上一點(diǎn),且滿.[來源:學(xué)#科#網(wǎng)]

(1)求離心率的取值范圍;

(2)當(dāng)離心率取得最小值時(shí),點(diǎn)到橢圓上點(diǎn)的最遠(yuǎn)距離為

①求此時(shí)橢圓G的方程;

②設(shè)斜率為的直線與橢圓G相交于不同兩點(diǎn),的中點(diǎn),問:

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:0111 期中題 題型:解答題

已知橢圓G:的兩個(gè)焦點(diǎn)為F1、F2,點(diǎn)P在橢圓G上,且PF1⊥F1F2,且,斜率為1的直線l與橢圓G交與A、B兩點(diǎn),以AB為底邊作等腰三角形,頂點(diǎn)為P(-3,2),
(1)求橢圓G的方程;
(2)求△PAB的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓G:的兩個(gè)焦點(diǎn)為F1、F2,短軸兩端點(diǎn)B1、B2,已知F1、F2、B1、B2四點(diǎn)共圓 ,且點(diǎn)N(0,3)到橢圓上的點(diǎn)的最遠(yuǎn)距離為

(1)求此時(shí)橢圓G的方程;

(2)設(shè)斜率為k(k≠0)的直線m與橢圓G相交于不同的兩點(diǎn)E、F,Q為EF的中點(diǎn),問E、F兩點(diǎn)能否關(guān)于過點(diǎn)的直線對(duì)稱?若能,求出k的取值范圍;若不能,請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分14分)

橢圓G:的兩個(gè)焦點(diǎn)為F1、F2,短軸兩端點(diǎn)B1、B2,已知

F1F2、B1、B2四點(diǎn)共圓,且點(diǎn)N(0,3)到橢圓上的點(diǎn)最遠(yuǎn)距離為

  (1)求此時(shí)橢圓G的方程;

  (2)設(shè)斜率為k(k≠0)的直線m與橢圓G相交于不同的兩點(diǎn)E、F,Q為EF的中點(diǎn),問E、F兩點(diǎn)能否關(guān)于過點(diǎn)P(0,)、Q的直線對(duì)稱?若能,求出k的取值范圍;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓G:的兩個(gè)焦點(diǎn)為是橢圓上一點(diǎn),且滿

(1)求離心率的取值范圍;

(2)當(dāng)離心率取得最小值時(shí),點(diǎn)到橢圓上點(diǎn)的最遠(yuǎn)距離為

①求此時(shí)橢圓G的方程;

②設(shè)斜率為的直線與橢圓G相交于不同兩點(diǎn),的中點(diǎn),問:

查看答案和解析>>

同步練習(xí)冊(cè)答案