經(jīng)過點M(3,-l),且對稱軸在坐標軸上的等軸雙曲線的標準方程為______.
設對稱軸在坐標軸上的等軸雙曲線的方程為x2-y2=λ(λ≠0),
將點M(3,-l),代入可得9-1=λ,
∴λ=8,
∴方程為x2-y2=8,即
x2
8
-
y2
8
=1

故答案為:
x2
8
-
y2
8
=1
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

已知雙曲線E的中心為原點,P(3,0)是E的焦點,過P的直線l與E相交于A,B兩點,且AB的中點為N(-12,-15),則E的方程式為( 。
A.
x2
3
-
y2
6
=1
B.
x2
4
-
y2
5
=1
C.
x2
6
-
y2
3
=1
D.
x2
5
-
y2
4
=1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

與橢圓
x2
9
+
y2
5
=1
有公共焦點,且兩條漸近線互相垂直的雙曲線方程為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知中心在原點,焦點在y軸上的雙曲線C的虛軸長為2,實軸長為4,則雙曲線C的方程是( 。
A.
x2
4
-y2=1
B.
x2
16
-
y2
4
=1
C.
y2
4
-x2=1
D.
y2
16
-
x2
4
=1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如果方程
x2
|m|-1
-
y2
m-2
=1表示雙曲線,那么實數(shù)m的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

與橢圓
x2
6
+y2=1
共焦點,且漸近線為y=±2x的雙曲線方程是( 。
A.x2-
y2
4
=1
B.y2-
x2
4
=1
C.
x2
4
-y2=1
D.
y2
4
-x2=1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

命題P:方程
x2
k-2
+
y2
k-1
=1
表示雙曲線,命題q:不等式x2-2x+k2-1>0對一切實數(shù)x恒成立.
(1)求命題P中雙曲線的焦點坐標;
(2)若命題“p且q”為真命題,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

雙曲線
x2
a2
-
y2
b2
=1
的兩焦點分別為F1和F2,若雙曲線上存在不是頂點的點P,使得∠PF2F1=3∠PF1F2,則雙曲線離心率e的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

P為雙曲線上一點,為一個焦點,以為直徑的圓與圓的位置關系為       (    )
A 內(nèi)切    B 外切     C 內(nèi)切或外切     D 無公共點或相交

查看答案和解析>>

同步練習冊答案