【題目】在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為(為參數(shù)),若以該直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為:(其中為常數(shù)).
(1)若曲線(xiàn)與曲線(xiàn)有兩個(gè)不同的公共點(diǎn),求的取值范圍;
(2)當(dāng)時(shí),求曲線(xiàn)上的點(diǎn)與曲線(xiàn)上點(diǎn)的最小距離.
【答案】(Ⅰ)或;(Ⅱ).
【解析】
試題消去參數(shù)把曲線(xiàn)的參數(shù)方程化為普通方程,利用公式把曲線(xiàn)的極坐標(biāo)方
程化為直角坐標(biāo)方程,利用數(shù)形結(jié)合的思想可以得出曲線(xiàn)有一個(gè)公共點(diǎn)時(shí)的的范圍;(2)直線(xiàn)
N:,設(shè)M上點(diǎn)為,,則 ,由此可求
得最小值.
試題解析:對(duì)于曲線(xiàn)M,消去參數(shù),得普通方程為,曲線(xiàn)是拋物線(xiàn)的一部分; 對(duì)于曲線(xiàn)N,化成直角坐標(biāo)方程為,曲線(xiàn)N是一條直線(xiàn). (2分)
(1)若曲線(xiàn)M,N只有一個(gè)公共點(diǎn),則有直線(xiàn)N過(guò)點(diǎn)時(shí)滿(mǎn)足要求,并且向左下方平行運(yùn)動(dòng)直到過(guò)點(diǎn)之前總是保持只有一個(gè)公共點(diǎn),再接著向左下方平行運(yùn)動(dòng)直到相切之前總是有兩個(gè)公共點(diǎn),所以滿(mǎn)足要求;相切時(shí)仍然只有一個(gè)公共點(diǎn),由,得 ,求得.綜合可求得的取值范圍是:或. (6分)
(2)當(dāng)時(shí),直線(xiàn)N:,設(shè)M上點(diǎn)為,,則
,
當(dāng)時(shí)取等號(hào),滿(mǎn)足,所以所求的最小距離為. (10分)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某區(qū)“創(chuàng)文明城區(qū)”(簡(jiǎn)稱(chēng)“創(chuàng)城”)活動(dòng)中,教委對(duì)本區(qū)四所高中學(xué)校按各校人數(shù)分層抽樣,隨機(jī)抽查了100人,將調(diào)查情況進(jìn)行整理后制成下表:
學(xué)校 | ||||
抽查人數(shù) | 50 | 15 | 10 | 25 |
“創(chuàng)城”活動(dòng)中參與的人數(shù) | 40 | 10 | 9 | 15 |
(注:參與率是指:一所學(xué)校“創(chuàng)城”活動(dòng)中參與的人數(shù)與被抽查人數(shù)的比值)假設(shè)每名高中學(xué)生是否參與”創(chuàng)城”活動(dòng)是相互獨(dú)立的.
(1)若該區(qū)共2000名高中學(xué)生,估計(jì)學(xué)校參與“創(chuàng)城”活動(dòng)的人數(shù);
(2)在隨機(jī)抽查的100名高中學(xué)生中,隨機(jī)抽取1名學(xué)生,求恰好該生沒(méi)有參與“創(chuàng)城”活動(dòng)的概率;
(3)在上表中從兩校沒(méi)有參與“創(chuàng)城”活動(dòng)的同學(xué)中隨機(jī)抽取2人,求恰好兩校各有1人沒(méi)有參與“創(chuàng)城”活動(dòng)的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“微信運(yùn)動(dòng)”是手機(jī)推出的多款健康運(yùn)動(dòng)軟件中的一款,大學(xué)生M的微信好友中有400位好友參與了“微信運(yùn)動(dòng)”.他隨機(jī)抽取了40位參與“微信運(yùn)動(dòng)”的微信好友(女20人,男20人)在某天的走路步數(shù),經(jīng)統(tǒng)計(jì),其中女性好友走路的步數(shù)情況可分為五個(gè)類(lèi)別:、步,(說(shuō)明:“”表示大于或等于0,小于2000,以下同理),、步,、步,、步,、步,且、、三種類(lèi)別的人數(shù)比例為,將統(tǒng)計(jì)結(jié)果繪制如圖所示的柱形圖;男性好友走路的步數(shù)數(shù)據(jù)繪制如圖所示的頻率分布直方圖.
(Ⅰ)若以大學(xué)生抽取的微信好友在該天行走步數(shù)的頻率分布,作為參與“微信運(yùn)動(dòng)”的所有微信好友每天走路步數(shù)的概率分布,試估計(jì)大學(xué)生的參與“微信運(yùn)動(dòng)”的400位微信好友中,每天走路步數(shù)在的人數(shù);
(Ⅱ)若在大學(xué)生該天抽取的步數(shù)在的微信好友中,按男女比例分層抽取6人進(jìn)行身體狀況調(diào)查,然后再?gòu)倪@6位微信好友中隨機(jī)抽取2人進(jìn)行采訪(fǎng),求其中至少有一位女性微信好友被采訪(fǎng)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐中,底面為平行四邊形, , , , 點(diǎn)在底面內(nèi)的射影在線(xiàn)段上,且, ,M在線(xiàn)段上,且.
(Ⅰ)證明: 平面;
(Ⅱ)在線(xiàn)段AD上確定一點(diǎn)F,使得平面平面PAB,并求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,已知橢圓的上頂點(diǎn)坐標(biāo)為,離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若橢圓上的點(diǎn)的橫坐標(biāo)為,且位于第一象限,點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn)為點(diǎn),是位于直線(xiàn)異側(cè)的橢圓上的動(dòng)點(diǎn).
①若直線(xiàn)的斜率為,求四邊形面積的最大值;
②若動(dòng)點(diǎn)滿(mǎn)足,試探求直線(xiàn)的斜率是否為定值?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果是拋物線(xiàn)上的點(diǎn),它們的橫坐標(biāo)依次為,是拋物線(xiàn)的焦點(diǎn),若,則_______________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年初,某市為了實(shí)現(xiàn)教育資源公平,辦人民滿(mǎn)意的教育,準(zhǔn)備在今年8月份的小升初錄取中在某重點(diǎn)中學(xué)實(shí)行分?jǐn)?shù)和搖號(hào)相結(jié)合的錄取辦法.該市教育管理部門(mén)為了了解市民對(duì)該招生辦法的贊同情況,隨機(jī)采訪(fǎng)了440名市民,將他們的意見(jiàn)和是否近三年家里有小升初學(xué)生的情況進(jìn)行了統(tǒng)計(jì),得到如下的2×2列聯(lián)表.
贊同錄取辦法人數(shù) | 不贊同錄取辦法人數(shù) | 合計(jì) | |
近三年家里沒(méi)有小升初學(xué)生 | 180 | 40 | 220 |
近三年家里有小升初學(xué)生 | 140 | 80 | 220 |
合計(jì) | 320 | 120 | 440 |
(1)根據(jù)上面的列聯(lián)表判斷,能否在犯錯(cuò)誤的概率不超過(guò)0.001的前提下認(rèn)為是否贊同小升初錄取辦法與近三年是否家里有小升初學(xué)生有關(guān);
(2)從上述調(diào)查的不贊同小升初錄取辦法人員中根據(jù)近三年家里是否有小升初學(xué)生按分層抽樣抽出6人,再?gòu)倪@6人中隨機(jī)抽出3人進(jìn)行電話(huà)回訪(fǎng),求3人中恰有1人近三年家里沒(méi)有小升初學(xué)生的概率.
附:,其中.
P() | 0.10 | 0.05 | 0.025 | 0.10 | 0.005 | 0.001 |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形是邊長(zhǎng)為2的菱形,且,平面,,,點(diǎn)是線(xiàn)段上任意一點(diǎn).
(1)證明:平面平面;
(2)若的最大值是,求三棱錐的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com