如圖,已知在四棱錐P﹣ABCD中,底面ABCD是邊長為4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E,F(xiàn),G分別是PD,PC,BC的中點(diǎn).
(1)求證:平面EFG⊥平面PAD;
(2)若M是線段CD上一點(diǎn),求三棱錐M﹣EFG的體積.
(1)詳見解析;(2).
解析試題分析:(1)要證明面面垂直,只需在一個平面內(nèi)找到另一平面的一條垂線.由已知平面平面,且,可證平面,再根據(jù)是中位線,可證,從而平面,進(jìn)而再證平面平面,該題實質(zhì)是先找到面的一條垂線,再將平移到面內(nèi);
(2)點(diǎn)是線段的動點(diǎn),考慮到和到面的距離相等,故,再結(jié)合第(1)問結(jié)果,取的中點(diǎn)連接,據(jù)面面垂直的性質(zhì),點(diǎn)到的距離就是三棱錐的高,再求,進(jìn)而求體積.
試題解析:(1)∵平面平面,平面平面, 平面,,平面,又中,分別是的中點(diǎn),,可得平面, 平面,∴平面平面;
(2), 平面,平面,平面,因此上的點(diǎn)到平面的距離等于點(diǎn)到平面的距離,∴,取的中點(diǎn)連接,則,平面, 平面,∴,于是,
∵平面平面
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在長方體中,, 沿平面把這個長方體截成兩個幾何體: 幾何體(1);幾何體(2)
(I)設(shè)幾何體(1)、幾何體(2)的體積分為是、,求與的比值
(II)在幾何體(2)中,求二面角的正切值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)在三棱柱中,側(cè)面為矩形,,,為的中點(diǎn),與交于點(diǎn),側(cè)面.
(1)證明:;
(2)若,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四邊形為矩形,平面,,平面于點(diǎn),且點(diǎn)在上.
(1)求證:;
(2)求四棱錐的體積;
(3)設(shè)點(diǎn)在線段上,且,試在線段上確定一點(diǎn),使得平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
三棱錐P?ABC中,PA⊥平面ABC,AB⊥BC。
(1)證明:平面PAB⊥平面PBC;
(2)若,,PB與底面ABC成60°角,分別是與的中點(diǎn),是線段上任意一動點(diǎn)(可與端點(diǎn)重合),求多面體的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四邊形為矩形,平面,為上的點(diǎn),且平面.
(1)求三棱錐的體積;
(2)設(shè)在線段上,且滿足,試在線段上確定一點(diǎn),使得平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知三棱柱,底面三角形為正三角形,側(cè)棱底面,,為的中點(diǎn),為中點(diǎn).
(Ⅰ)求證:直線平面;
(Ⅱ)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
有一個倒圓錐形容器,它的軸截面是一個正三角形,在容器內(nèi)放一個半徑為r的鐵球,并注入水,使水面與球正好相切,然后將球取出,求這時容器中水的深度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com