【題目】若集合,集合函數(shù)至多有一個(gè)零點(diǎn),則的元素之和的函數(shù)關(guān)系式_________.
【答案】
【解析】
求出集合B,討論a的取值,求出集合A,再求函數(shù)f(a)的表達(dá)式.
集合A={x|x2+4x+a=0},
集合B={t|函數(shù)f(x)=4x2﹣8x+t(4﹣t)至多有一個(gè)零點(diǎn)}={t|64﹣16t(4﹣t)≤0}={t|t=2}={2},
△=16﹣4a,
a>4時(shí),△<0,方程x2+4x+a=0無解,A=;f(a)=2;
a=4時(shí),△=0,方程x2+4x+a=0有一解﹣2,A={﹣2};f(a)=﹣2+2=0;
a=﹣12時(shí),△=64,方程x2+4x+a=0有兩解﹣6和2,A={2,﹣6};f(a)=2﹣6=﹣4;
a∈(﹣∞,﹣12)∪(﹣12,4)時(shí),△=16﹣4a,
方程x2+4x+a=0有兩解﹣2和﹣2,A={﹣2,﹣2};
f(a)=(﹣2)+(﹣2)+2=-2
∴函數(shù)f(a).
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,設(shè)曲線在點(diǎn)處的切線與圓相切.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)求函數(shù)在上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電視臺(tái)在一次對(duì)收看文藝節(jié)目和新聞節(jié)目觀眾的抽樣調(diào)查中,隨機(jī)抽取了100名電視觀眾,相關(guān)的數(shù)據(jù)如下表所示:
文藝節(jié)目 | 新聞節(jié)目 | 總計(jì) | |
20至40歲 | 30 | 18 | 48 |
大于40歲 | 20 | 32 | 52 |
總計(jì) | 50 | 50 | 100 |
(1)用分層抽樣方法在收看文藝節(jié)目的觀眾中隨機(jī)抽取5名,大于40歲的觀眾應(yīng)該抽取幾名?
(2)在上述抽取的5名觀眾中任取2名,求恰有1名觀眾的年齡為大于40歲的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)有兩個(gè)不同零點(diǎn)、(),設(shè)函數(shù)的定義域?yàn)?/span>,且的最大值記為,最小值記為.
(1)求(用表示);
(2)當(dāng)時(shí),試問以、、為長度的線段能否組成一個(gè)三角形,如果不一定,進(jìn)一步求出的取值范圍,使它們能組成一個(gè)三角形;
(3)求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面給出了根據(jù)我國2012年~2018年水果人均占有量(單位:)和年份代碼繪制的散點(diǎn)圖和線性回歸方程的殘差圖(2012年~2018年的年份代碼分別為1~7).
(1)根據(jù)散點(diǎn)圖分析與之間的相關(guān)關(guān)系;
(2)根據(jù)散點(diǎn)圖相應(yīng)數(shù)據(jù)計(jì)算得,求關(guān)于的線性回歸方程;
(3)根據(jù)線性回歸方程的殘差圖,分析線性回歸方程的擬合效果.(精確到0.01)
附:回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,為了測量A、B處島嶼的距離,小海在D處觀測,A、B分別在D處的北偏西15°、北偏東45°方向,再往正東方向行駛20海里至C處,觀測B在C處的正北方向,A在C處的北偏西45°方向,則A、B兩島嶼的距高為___________海里.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)設(shè),若對(duì)任意、,且,都有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓的左、右焦點(diǎn)分別為、,以線段為直徑的圓與橢圓交于點(diǎn).
(1)求橢圓的方程;
(2)過軸正半軸上一點(diǎn)作斜率為的直線.
①若與圓和橢圓都相切,求實(shí)數(shù)的值;
②直線在軸左側(cè)交圓于、兩點(diǎn),與橢圓交于點(diǎn)、(從上到下依次為、、、),且,求實(shí)數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某飲料生產(chǎn)企業(yè)為了占有更多的市場份額,擬在2017年度進(jìn)行一系列促銷活動(dòng),經(jīng)過市場調(diào)查和測算,飲料的年銷售量x萬件與年促銷費(fèi)t萬元間滿足.已知2017年生產(chǎn)飲料的設(shè)備折舊,維修等固定費(fèi)用為3萬元,每生產(chǎn)1萬件飲料需再投入32萬元的生產(chǎn)費(fèi)用,若將每件飲料的售價(jià)定為其生產(chǎn)成本的150%與平均每件促銷費(fèi)的一半之和,則該年生產(chǎn)的飲料正好能銷售完.
(1)將2017年的利潤y(萬元)表示為促銷費(fèi)t(萬元)的函數(shù);
(2)該企業(yè)2017年的促銷費(fèi)投入多少萬元時(shí),企業(yè)的年利潤最大?
(注:利潤=銷售收入-生產(chǎn)成本-促銷費(fèi),生產(chǎn)成本=固定費(fèi)用+生產(chǎn)費(fèi)用)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com