【題目】若函數(shù)y=f(x)在x=x0處取得極大值或極小值,則稱x0為函數(shù)y=f(x)的極值點.已知a,b是實數(shù),1和-1是函數(shù)f(x)=x3+ax2+bx的兩個極值點.

(1)求a和b的值;

(2)設函數(shù)g(x)的導函數(shù)g′(x)=f(x)+2,求g(x)的極值點.

【答案】(1)a=0,b=-3.

(2)-2.

【解析】(1)由題設得f′(x)=3x2+2ax+b,

所以,

解之得a=0,b=-3.

(2)由(1)知f(x)=x3-3x.

因為f(x)+2=(x-1)2(x+2),

所以g′(x)=0的根為x1=x2=1,x3=-2,

于是函數(shù)g(x)的極值點只可能是1或-2.

當x<-2時,g′(x)<0;當-2<x<1時,

g′(x)>0,故-2是g(x)的極值點.

當-2<x<1或x>1時,g′(x)>0,

故1不是g(x)的極值點.

所以g(x)的極值點為-2.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】若無窮數(shù)列{an}滿足:只要ap=aq(p,q∈N*),必有ap+1=aq+1 , 則稱{an}具有性質P.
(1)若{an}具有性質P,且a1=1,a2=2,a4=3,a5=2,a6+a7+a8=21,求a3;
(2)若無窮數(shù)列{bn}是等差數(shù)列,無窮數(shù)列{cn}是公比為正數(shù)的等比數(shù)列,b1=c5=1;b5=c1=81,an=bn+cn , 判斷{an}是否具有性質P,并說明理由;
(3)設{bn}是無窮數(shù)列,已知an+1=bn+sinan(n∈N*),求證:“對任意a1 , {an}都具有性質P”的充要條件為“{bn}是常數(shù)列”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l過直線x﹣y﹣1=0與直線2x+y﹣5=0的交點P.

(1)若l與直線x+3y﹣1=0垂直,求l的方程;

(2)點A(﹣1,3)和點B(3,1)到直線l的距離相等,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在四面體VABC木塊中,P為△VAC的重心,這點P作截面EFGH,若截面EFGH是平行四邊形,則該截面把木塊分成兩部分體積之比為____________. (填體積小與體積大之比

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知點P是平行四邊形ABCD所在平面外一點,M、N分別是AB、PC的中點.

(1)求證:MN∥平面PAD;

(2)在PB上確定一個點Q,使平面MNQ∥平面PAD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,2012年春節(jié),攝影愛好者在某公園處,發(fā)現(xiàn)正前方處有一立柱,測得立柱頂端的仰角和立柱底部的俯角均為,設的眼睛距地面的距離米.

(1)求攝影者到立柱的水平距離和立柱的高度;

(2)立柱的頂端有一長2米的彩桿繞其中點與立柱所在的平面內旋轉.攝影者有一視角范圍為的鏡頭,在彩桿轉動的任意時刻,攝影者是否都可以將彩桿全部攝入畫面?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓為坐標原點,動點在圓外,過點作圓的切線,設切點為.

(1)若點運動到處,求此時切線的方程;

(2)求滿足的點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如果數(shù)列a1 , a2 , a3 , … , an , …是等差數(shù)列,那么下列數(shù)列中不是等差數(shù)列的是:(
A.a1+x , a2+x , a3+x , …,an+x ,
B.ka1 , ka2 , ka3 , …,kan ,
C.
D.a1 , a4 , a7 , …a3n2 ,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合M={x|3+2xx2>0},N={x|x>a},若MN,則實數(shù)a的取值范圍是(
A.[3,+∞)
B.(3,+∞)
C.(﹣∞,﹣1]
D.(﹣∞,﹣1)

查看答案和解析>>

同步練習冊答案