【題目】已知函數(shù)的導函數(shù)為,且對任意的實數(shù)都有是自然對數(shù)的底數(shù)),且,若關于的不等式的解集中恰有兩個整數(shù),則實數(shù)的取值范圍是

A. B. C. D.

【答案】A

【解析】

利用導數(shù)研究其單調性極值與最值并且畫出圖象即可得出.

f'(x)=e﹣x(2x+3)﹣f(x),

ex[f(′x)+f(x)]=2x+3,

exf(x)=x2+3x+c,

f(0)=1,

1=0+0+c,

解得c=1

f(x)=(x2+3x+1)e﹣x,

f′(x)=﹣(x2+x﹣2)e﹣x=﹣(x﹣1)(x+2)e﹣x

f′(x)=0,解得x=1x=﹣2,

x﹣2x1時,f′(x)0,函數(shù)f(x)單調遞減,

當﹣2x1時,f′(x)0,函數(shù)f(x)單調遞減增,

可得:x=1時,函數(shù)f(x)取得極大值,x=﹣2時,函數(shù)f(x)取得極小值,

f(1)=,f(﹣2)=﹣e20,f(﹣1)=﹣e,f(0)=10,f(﹣3)=e30

﹣em0時,f(x)﹣m0的解集中恰有兩個整數(shù)恰有兩個整數(shù)﹣1,﹣2.

m的取值范圍是(﹣e,0],

故選:A.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知三棱錐DABC中,二面角ABCD的大小為90°,且∠BDC90°,∠ABC30°,BC3,

1)求證:AC⊥平面BCD;

2)二面角BACD45°,且E為線段BC的中點,求直線AE與平面ACD所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)的圖像向左平移個單位后得到函數(shù)的圖像,且函數(shù)滿足,則下列命題中正確的是()

A. 函數(shù)圖像的兩條相鄰對稱軸之間的距離為

B. 函數(shù)圖像關于點對稱

C. 函數(shù)圖像關于直線對稱

D. 函數(shù)在區(qū)間內為單調遞減函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學的環(huán)保社團參照國家環(huán)境標準制定了該校所在區(qū)域空氣質量指數(shù)與空氣質量等級對應關系如下表(假設該區(qū)域空氣質量指數(shù)不會超過300):

空氣質量指數(shù)

空氣質量等級

1級優(yōu)

2級良

3級輕度污染

4級中度污染

5級重度污染

6級嚴重污染

該社團將該校區(qū)在2018年11月中10天的空氣質量指數(shù)監(jiān)測數(shù)據(jù)作為樣本,繪制的頻率分布直方圖如下圖,把該直方圖所得頻率估計為概率.

(1)以這10天的空氣質量指數(shù)監(jiān)測數(shù)據(jù)作為估計2018年11月的空氣質量情況,則2018年11月中有多少天的空氣質量達到優(yōu)良?

(2)從這10天的空氣質量指數(shù)監(jiān)測數(shù)據(jù)中,隨機抽取三天,求恰好有一天空氣質量良的概率;

(3)從這10天的數(shù)據(jù)中任取三天數(shù)據(jù),記表示抽取空氣質量良的天數(shù),求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】動圓M與圓F1x2+y2+6x+50外切,同時與圓F2x2+y26x910內切.

1)求動圓圓心M的軌跡方程E,并說明它是什么曲線;

2)若直線yx+m與(1)中的軌跡E有兩個不同的交點,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法中正確的是( 。

A.,則,的長度相等,方向相同或相反

B.若向量是向量的相反向量,則

C.空間向量的減法滿足結合律

D.在四邊形中,一定有

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設點是拋物線上的動點,的準線上的動點,直線且與為坐標原點)垂直,則點的距離的最小值的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,以坐標原點為極點,軸正半軸為極坐標建立極坐標系,圓的極坐標方程為.

的普通方程;

將圓平移,使其圓心為,設是圓上的動點,點關于原點對稱,線段的垂直平分線與相交于點,求的軌跡的參數(shù)方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法中正確的是( )

A. ”是“”成立的充分不必要條件

B. 命題,則

C. 為了了解800名學生對學校某項教改試驗的意見,用系統(tǒng)抽樣的方法從中抽取一個容量為40的樣本,則分組的組距為40

D. 已知回歸直線的斜率的估計值為1.23,樣本點的中心為,則回歸直線方程為.

查看答案和解析>>

同步練習冊答案