【題目】古希臘人常用小石子在沙灘上擺成各種形狀來研究數(shù).比如:
他們研究過圖1中的1,3,6,10,…,由于這些數(shù)能夠表示成三角形,將其稱為三角形數(shù);類似地,稱圖2中的1,4,9,16,…,這樣的數(shù)為正方形數(shù).下列數(shù)中既是三角形數(shù)又是正方形數(shù)的是( )
A.289
B.1024
C.1225
D.1378
科目:高中數(shù)學 來源: 題型:
【題目】汽車廠生產(chǎn)A,B,C三類轎車,每類轎車均有舒適型和標準型兩種型號,某月的產(chǎn)量如下表(單位:輛);
轎車A | 轎車B | 轎車C | |
舒適型 | 100 | 150 | z |
標準型 | 300 | 450 | 600 |
按類用分層抽樣的方法在這個月生產(chǎn)的轎車中抽取50輛,其中有A類轎車10輛.
(1)求z的值;
(2)用分層抽樣的方法在C類轎車中抽取一個容量為5的樣本,將該樣本看成一個總體,從中任取2輛,求至少有1輛舒適型轎車的概率;
(3)用隨機抽樣的方法從B類舒適型轎車中抽取8輛,經(jīng)檢測它們的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把這8輛轎車的得分看成一個總體,從中任取一個數(shù),求該數(shù)與樣本平均數(shù)之差的絕對值不超過0.5的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= (x>0).
(1)試判斷函數(shù)f(x)在(0,+∞)上單調(diào)性并證明你的結(jié)論;
(2)若f(x)> 恒成立,求整數(shù)k的最大值;
(3)求證:(1+1×2)(1+2×3)…[1+n(n+1)]>e2n﹣3 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,側(cè)面PAD⊥底面ABCD,E,F(xiàn)分別為PA,BD中點,PA=PD=AD=2.
(Ⅰ)求證:EF∥平面PBC;
(Ⅱ)求二面角E﹣DF﹣A的余弦值;
(Ⅲ)在棱PC上是否存在一點G,使GF⊥平面EDF?若存在,指出點G的位置;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若等比數(shù)列{an}的前n項和Sn=2016n+t(t為常數(shù)),則a1的值為( )
A.2013
B.2014
C.2015
D.2016
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列{an}滿足:a3=6,a5+a7=24,{an}的前n項和為Sn .
(1)求an及Sn;
(2)令bn= (n∈N+),求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在上的函數(shù)滿足:函數(shù)的圖象關于直線對稱,且當時是函數(shù)的導函數(shù))成立.若,則的大小關系是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,橢圓的左、右焦點分別為, 也是拋物線的焦點,點為與在第一象限的交點,且.
(1)求的方程;
(2)平面上的點滿足,直線,且與交于兩點,若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線經(jīng)過兩條直線l1:3x+4y﹣5=0和l2:2x﹣3y+8=0的交點M.
(1)若直線l與直線2x+y+2=0垂直,求直線l的方程;
(2)若直線l′與直線l1關于點(1,﹣1)對稱,求直線l′的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com