【題目】已知圓,過直線上第一象限內(nèi)的一動點作圓的兩條切線,切點分別為,過兩點的直線與坐標軸分別交于兩點,則面積的最小值為( )
A.B.C.D.
【答案】B
【解析】
由切線的性質(zhì),結(jié)合四點共圓判斷可得O,A,M,B四點共圓,求得圓方程,由兩圓方程相減可得相交弦AB方程,由題意可得面積,結(jié)合基本不等式求得最值.
因為AB為切點,所以OA⊥AM,OB⊥BM,
所以O,A,M,B四點共圓,設(shè)M(,),
則其圓心O'(,),方程為(x)2+(y)2,
整理得x2+y2﹣xx0﹣yy0=0,與圓O:x2+y2=1的方程作差得x+ y=1,
又AB是圓O與圓O'的公共弦,
即直線AB的方程為x+ y=1,
又過兩點的直線與坐標軸分別交于兩點,
得P(,0)Q(0,),又+=2,∴,當且僅當==1等號成立,
則面積為,∴面積的最小值為
故選:B.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,)的圖象與軸交點的橫坐標構(gòu)成一個公差為的等差數(shù)列,把函數(shù)的圖象沿軸向左平移個單位,縱坐標擴大到原來的2倍得到函數(shù)的圖象,則下列關(guān)于函數(shù)的命題中正確的是( )
A.函數(shù)是奇函數(shù)B.的圖象關(guān)于直線對稱
C.在上是增函數(shù)D.當時,函數(shù)的值域是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,已知橢圓:的焦距為2,且過點.
(1)求橢圓的方程;
(2)設(shè)橢圓的上頂點為,右焦點為,直線與橢圓交于,兩點,問是否存在直線,使得為的垂心,若存在,求出直線的方程:若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓(),點為橢圓短軸的上端點,為橢圓上異于點的任一點,若點到點距離的最大值僅在點為短軸的另一端點時取到,則稱此橢圓為“圓橢圓”,已知.
(1)若,判斷橢圓是否為“圓橢圓”;
(2)若橢圓是“圓橢圓”,求的取值范圍;
(3)若橢圓是“圓橢圓”,且取最大值,為關(guān)于原點的對稱點,也異于點,直線、分別與軸交于、兩點,試問以線段為直徑的圓是否過定點?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當時,求在處的切線方程;
(2)令,已知函數(shù)有兩個極值點,且,求實數(shù)的取值范圍;
(3)在(2)的條件下,若存在,使不等式對任意(取值范圍內(nèi)的值)恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)寫出曲線的極坐標方程,并求出曲線與公共弦所在直線的極坐標方程;
(2)若射線與曲線交于兩點,與曲線交于點,且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)討論函數(shù)零點的個數(shù);
(3)若存在兩個不同的零點,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)在“精準扶貧”行動中,決定幫助一貧困山區(qū)將水果運出銷售.現(xiàn)有8輛甲型車和4輛乙型車,甲型車每次最多能運6噸且每天能運4次,乙型車每次最多能運10噸且每天能運3次,甲型車每天費用320元,乙型車每天費用504元.若需要一天內(nèi)把180噸水果運輸?shù)交疖囌,則通過合理調(diào)配車輛運送這批水果的費用最少為______元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com