【題目】已知函數(shù)

(Ⅰ)當(dāng)m=0時(shí),求曲線y=f(x)在x=1處的切線方程;

(Ⅱ)若函數(shù)f(x)的圖象在x軸的上方,求m的取值范圍.

【答案】(Ⅰ)y=-x+1;(Ⅱ)

【解析】

(Ⅰ)求得f(x)解析式和導(dǎo)數(shù),可得切線的斜率,由點(diǎn)斜式方程可得切線方程;

(Ⅱ)由題意,求得f(x)的導(dǎo)數(shù),按m≤0,0<m≤1分類討論,得f(x)的單調(diào)性,計(jì)算得最小值,解不等式即可得所求的范圍.

(Ⅰ)當(dāng)m=0時(shí),f(x)=﹣xlnx,f(x)=﹣lnx﹣1,所以f(1)=0,f(1)=﹣1,

所以曲線y=f(x)在x=1處的切線方程是y=﹣x+1;

(Ⅱ)“函數(shù)f(x)的圖象在x軸的上方”,等價(jià)于“x>0時(shí),f(x)>0恒成立”.

,得f(x)=(2mx-1)lnx+2mx-1=(2mx-1)(lnx+1),

①當(dāng)m≤0時(shí),因?yàn)?/span>,不合題意;

②當(dāng)0<m≤1時(shí),令f(x)=0得,顯然;

令f(x)>0得;令f(x)<0得,

所以函數(shù)f(x)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間,

當(dāng)時(shí),mx2﹣x<0,lnx<0,所以,

只需,所以,所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以原點(diǎn)為極點(diǎn),以軸為非負(fù)半軸為極軸建立極坐標(biāo)系,兩坐標(biāo)系相同的長(zhǎng)度單位.圓的方程為被圓截得的弦長(zhǎng)為.

(Ⅰ)求實(shí)數(shù)的值;

(Ⅱ)設(shè)圓與直線交于點(diǎn),若點(diǎn)的坐標(biāo)為,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知?jiǎng)訄A軸相切,且與圓外切;

(1)求動(dòng)圓圓心的軌跡的方程;

(2)若直線過定點(diǎn),且與軌跡交于、兩點(diǎn),與圓交于、兩點(diǎn),若點(diǎn)到直線的距離為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(I)若為曲線上的動(dòng)點(diǎn),點(diǎn)在線段上,且滿足,求點(diǎn)的軌跡的直角坐標(biāo)方程;

(Ⅱ)設(shè)直線的參數(shù)方程為為參數(shù),,且直線與曲線相交于,兩點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校學(xué)生會(huì)開展了一次關(guān)于垃圾分類問卷調(diào)查的實(shí)踐活動(dòng),組織部分學(xué)生干部在幾個(gè)大型小區(qū)隨機(jī)抽取了共50名居民進(jìn)行問卷調(diào)查.調(diào)查結(jié)束后,學(xué)生會(huì)對(duì)問卷結(jié)果進(jìn)行了統(tǒng)計(jì),并將其中一個(gè)問題是否知道垃圾分類方法(知道或不知道)的調(diào)查結(jié)果統(tǒng)計(jì)如下表:

年齡(歲)

頻數(shù)

14

12

8

6

知道的人數(shù)

3

4

8

7

3

2

1)求上表中的的值,并補(bǔ)全右圖所示的的頻率直方圖;

2)在被調(diào)查的居民中,若從年齡在的居民中各隨機(jī)選取1人參加垃圾分類知識(shí)講座,求選中的兩人中僅有一人不知道垃圾分類方法的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,梯形所在的平面與等腰梯形所在的平面互相垂直,,的中點(diǎn).,.

1)求證:平面;

2)求證:平面平面;

3)求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一項(xiàng)針對(duì)某一線城市3050歲都市中年人的消費(fèi)水平進(jìn)行調(diào)查,現(xiàn)抽查500名(200名女性,300名男性)此城市中年人,最近一年內(nèi)購(gòu)買六類高價(jià)商品(電子產(chǎn)品、服裝、手表、運(yùn)動(dòng)與戶外用品、珠寶首飾、箱包)的金額(萬(wàn)元)的頻數(shù)分布表如下:

女性

金額

頻數(shù)

20

40

80

50

10

男性

金額

頻數(shù)

45

75

90

60

30

1)將頻率視為概率,估計(jì)該城市中年人購(gòu)買六類高價(jià)商品的金額不低于5000元的概率.

2)把購(gòu)買六類高價(jià)商品的金額不低于5000元的中年人稱為高收入人群,根據(jù)已知條件完成列聯(lián)表,并據(jù)此判斷能否有95%的把握認(rèn)為高收入人群與性別有關(guān)?

高收入人群

非高收入人群

合計(jì)

女性

60

男性

180

合計(jì)

500

參考公式:,其中

參考附表:

0.10

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),則( )

A. 存在

B. 存在

C. 存在

D. 存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)、分別是正方體的棱,,的中點(diǎn),則下列命題中的真命題是__________(寫出所有真命題的序號(hào)).

①以正方體的頂點(diǎn)為頂點(diǎn)的三棱錐的四個(gè)面中最多可以四個(gè)面都是直角三角形;

②點(diǎn)在直線上運(yùn)動(dòng)時(shí),總有;

③點(diǎn)在直線上運(yùn)動(dòng)時(shí),三棱錐的體積是定值;

④若是正方體的面,(含邊界)內(nèi)一動(dòng)點(diǎn),且點(diǎn)到點(diǎn)的距離相等,則點(diǎn)的軌跡是一條線段.

查看答案和解析>>

同步練習(xí)冊(cè)答案