定義函數(shù)(為定義域)圖像上的點到坐標原點的距離為函數(shù)的的模.若模存在最大值,則稱之為函數(shù)的長距;若模存在最小值,則稱之為函數(shù)的短距.
(1)分別判斷函數(shù)是否存在長距與短距,若存在,請求出;
(2)求證:指數(shù)函數(shù)的短距小于1;
(3)對于任意是否存在實數(shù),使得函數(shù)的短距不小于2,若存在,請求出的取值范圍;不存在,則說明理由?

(1)短距為,長距不存在,短距為,長距為5;(2)證明見解析;(3).

解析試題分析:本題屬于新定義概念,問題的實質是求函數(shù)圖象上的點到原點的距離的最大值和最小值(如有的話),正面討論時我們把距離表示為的函數(shù).(1)對,(當且僅當時等號成立),因此存在短距為,不存在長距,對,
,,即有最大值也有最小值,因此短距和長距都有;(2)對函數(shù),,由于,因此短距不大于1,令,則有,故當時,存在使得 ,當時,存在使得 ,即證;(3)記,按題意條件,則有不等式恒成立,這類不等式恒成立求參數(shù)取值范圍問題,我們可采取分離參數(shù)法,轉化為求函數(shù)的最值,按分別討論,由此可求得的范圍.
(1)設(當且僅當取得等號)+2分
短距為,長距不存在。    +4分
(2)設   +6分
        +8分
短距為,長距為5。    +9分
(3)設 函數(shù)的短距不小于2
對于始終成立:+10分
時:對于始終成立    +12分
時:取即可知顯然不成立           +13分
時:對于始終成立      +15分
綜上     +16分
考點:新定義概念,函數(shù)的最大值與最小值,不等式恒成立問題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

函數(shù)
(1)若在其定義域內是增函數(shù),求b的取值范圍;
(2)若,若函數(shù)在 [1,3]上恰有兩個不同零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知f(x)=(x≠a).
(1)若a=-2,試證明f(x)在(-∞,-2)內單調遞增;
(2)若a>0且f(x)在(1,+∞)內單調遞減,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

關于x的二次方程x2+(m-1)x+1=0在區(qū)間[0,2]上有解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(13分)(2011•湖北)設函數(shù)f(x)=x3+2ax2+bx+a,g(x)=x2﹣3x+2,其中x∈R,a、b為常數(shù),已知曲線y=f(x)與y=g(x)在點(2,0)處有相同的切線l.
(Ⅰ) 求a、b的值,并寫出切線l的方程;
(Ⅱ)若方程f(x)+g(x)=mx有三個互不相同的實根0、x1、x2,其中x1<x2,且對任意的x∈[x1,x2],f(x)+g(x)<m(x﹣1)恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)設A>0,A≠1,函數(shù)有最大值,
求函數(shù)的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù),其中,為正整數(shù),,均為常數(shù),曲線處的切線方程為.
(1)求,的值;     
(2)求函數(shù)的最大值;
(3)證明:對任意的都有.(為自然對數(shù)的底)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

,用表示時的函數(shù)值中整數(shù)值的個數(shù).
(1)求的表達式.
(2)設,求.
(3)設,若,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

若直線y=2a與函數(shù)y=|ax-1|(a>0且a≠1)的圖象有兩個公共點,求a的取值范圍.

查看答案和解析>>

同步練習冊答案