設(shè)數(shù)列的前項(xiàng)和為,且.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)求證:.
(1);(2)詳見(jiàn)解析.
解析試題分析:(1)在和的關(guān)系式中,先利用這一特點(diǎn),令代入式子中求出的值,然后令,由求出的表達(dá)式,然后就的值是否符合的通項(xiàng)進(jìn)行檢驗(yàn),從而最終確定數(shù)列的通項(xiàng)公式;(2)先求出數(shù)列的通項(xiàng)公式,根據(jù)通項(xiàng)公式的特點(diǎn)利用等差數(shù)列求和公式求出,然后根據(jù)數(shù)列的通項(xiàng)公式的特點(diǎn)選擇裂項(xiàng)法求和,從而證明相應(yīng)不等式.
試題解析:(1)當(dāng)時(shí),.
當(dāng)時(shí),,此式對(duì)也成立.
.
(2)證明:設(shè),則.
所以是首項(xiàng)為,公差為的等差數(shù)列.
,
.
考點(diǎn):1.定義法求數(shù)列通項(xiàng);2.等差數(shù)列求和;3.裂項(xiàng)法求和
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
數(shù)列、的每一項(xiàng)都是正數(shù),,,且、、成等差數(shù)列,、、成等比數(shù)列,.
(Ⅰ)求、的值;
(Ⅱ)求數(shù)列、的通項(xiàng)公式;
(Ⅲ)證明:對(duì)一切正整數(shù),有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)是公差大于零的等差數(shù)列,已知,.
(Ⅰ)求的通項(xiàng)公式;
(Ⅱ)設(shè)是以函數(shù)的最小正周期為首項(xiàng),以為公比的等比數(shù)列,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知為等比數(shù)列,是等差數(shù)列,
(Ⅰ)求數(shù)列的通項(xiàng)公式及前項(xiàng)和;
(2)設(shè),,其中,試比較與的大小,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知等差數(shù)列滿足:,該數(shù)列的前三項(xiàng)分別加上l,l,3后順次成為等比數(shù)列的前三項(xiàng).
(I)求數(shù)列,的通項(xiàng)公式;
(II)設(shè),若恒成立,求c的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知等差數(shù)列中,.
(I)求數(shù)列的通項(xiàng)公式;
(II)若數(shù)列的前項(xiàng)和,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知等差數(shù)列前三項(xiàng)的和為,前三項(xiàng)的積為.
(1)求等差數(shù)列的通項(xiàng)公式;
(2)若,,成等比數(shù)列,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)是公比大于1的等比數(shù)列,為數(shù)列的前項(xiàng)和.已知,且構(gòu)成等差數(shù)列.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)令,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列為等差數(shù)列,數(shù)列為等比數(shù)列,若,且.
(1)求數(shù)列,的通項(xiàng)公式;
(2)是否存在,使得,若存在,求出所有滿足條件的;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com