如圖,點(diǎn)是橢圓的一個(gè)頂點(diǎn),的長(zhǎng)軸是圓的直徑,、是過點(diǎn)且互相垂直的兩條直線,其中交圓于、兩點(diǎn),交橢圓于另一點(diǎn).
(1)求橢圓的方程;
(2)求面積的最大值及取得最大值時(shí)直線的方程.
(1);當(dāng)直線的方程為時(shí),的面積取最大值.
解析試題分析:(1)首先根據(jù)題中條件求出和的值,進(jìn)而求出橢圓的方程;(2)先設(shè)直線的方程為,先利用弦心距、半徑長(zhǎng)以及弦長(zhǎng)之間滿足的關(guān)系(勾股定理)求出直線截圓所得的弦長(zhǎng)
,然后根據(jù)直線與兩者所滿足的垂直關(guān)系設(shè)直線,將直線的方程與橢圓的方程聯(lián)立,求出直線截橢圓的弦長(zhǎng),然后求出的面積的表達(dá)式,并利用基本不等式求出的面積的最大值,并求出此時(shí)直線的方程.
試題解析:(1)由題意得,
橢圓的方程為;
(2)設(shè)、、,
由題意知直線的斜率存在,不妨設(shè)其為,則直線的方程為,
故點(diǎn)到直線的距離為,又圓,
,
又,直線的方程為,
由,消去,整理得,
故,代入的方程得
,
設(shè)的面積為,則
,
,
當(dāng)且僅當(dāng),即時(shí)上式取等號(hào),
當(dāng)時(shí),的面積取得最大值,
此時(shí)直線的方程為
考點(diǎn):1.橢圓的方程;2.直線與圓、橢圓的位置關(guān)系;3.基本不等式
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
閱讀:
已知、,,求的最小值.
解法如下:,
當(dāng)且僅當(dāng),即時(shí)取到等號(hào),
則的最小值為.
應(yīng)用上述解法,求解下列問題:
(1)已知,,求的最小值;
(2)已知,求函數(shù)的最小值;
(3)已知正數(shù)、、,,
求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/99/2/8hywh.png" style="vertical-align:middle;" />. 設(shè)點(diǎn)P是函數(shù)圖象上的任意一點(diǎn),過點(diǎn)P分別作直線y=x和y軸的垂線,垂足分別為M、N.
(1)求證:是定值;
(2)判斷并說明有最大值還是最小值,并求出此最大值或最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知正方形ABCD,其中頂點(diǎn)A、C坐標(biāo)分別是 (2,0)、(2,4),點(diǎn)P(x,y)在正方形內(nèi)部(包括邊界)上運(yùn)動(dòng),則的最大值是
A.10 B.8 C.12 D.6
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com