【題目】【2014高考陜西版文第21題】設(shè)函數(shù).

(1)當(dāng)為自然對數(shù)的底數(shù))時,求的最小值;

(2)討論函數(shù)零點的個數(shù);

(3)若對任意恒成立,求的取值范圍.

【答案】(1)2;(2)當(dāng)時,函數(shù)無零點;當(dāng)時,函數(shù)有且僅有一個零點;當(dāng)時,函數(shù)有兩個零點;(3).

【解析】

試題分析:(1)當(dāng)時,,易得函數(shù)的定義域為,求出導(dǎo)函數(shù),利用判定函數(shù)在定義區(qū)間內(nèi)的單調(diào)性,并求出的極小值;

(2)由函數(shù),令,得,

設(shè),由求出函數(shù)的單調(diào)性以及極值,并且求出函數(shù)的零點,畫出的大致圖像,并從圖像中,可以得知,當(dāng)在不同范圍的時候,函數(shù)和函數(shù)的交點個數(shù)

(3)對任意恒成立,等價于恒成立,則上單調(diào)遞減,即恒成立,

求出的取值范圍.

試題解析:(1)當(dāng)時,

易得函數(shù)的定義域為

當(dāng)時,,此時上是減函數(shù);

當(dāng)時,,此時上是增函數(shù);

當(dāng)時,取得極小值

(2)函數(shù)

,得

設(shè)

當(dāng)時,,此時上式增函數(shù);

當(dāng)時,,此時上式增函數(shù);

當(dāng)時,取極大值

,即,解得,或

函數(shù)的圖像如圖所示:

由圖知:

當(dāng)時,函數(shù)和函數(shù)無交點;

當(dāng)時,函數(shù)和函數(shù)有且僅有一個交點;

當(dāng)時,函數(shù)和函數(shù)有兩個交點;

時,函數(shù)和函數(shù)有且僅有一個交點;

綜上所述,當(dāng)時,函數(shù)無零點;當(dāng)時,函數(shù)有且僅有一個零點;當(dāng)時,函數(shù)有兩個零點.

(3)對任意恒成立

等價于恒成立

設(shè)

上單調(diào)遞減

恒成立

當(dāng)且僅當(dāng)當(dāng)時,

的取值范圍是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩支籃球隊進行一局比賽,甲獲勝的概率為0.6,若采用三局兩勝制舉行一次比賽,現(xiàn)采用隨機模擬的方法估計乙獲勝的概率.

先利用計算器或計算機生成09之間取整數(shù)值的隨機數(shù),用0,1,2,3,4,5表示甲獲勝;6,7,8,9表示乙獲勝,這樣能體現(xiàn)甲獲勝的概率為0.6.因為采用三局兩勝制,所以每3個隨機數(shù)作為一組.例如,產(chǎn)生30組隨機數(shù).

034 743 738 636 964 736 614 698 637 162 332 616 804 560 111 410 959 774 246 762 428 114 572 042 533 237 322 707 360 751

據(jù)此估計乙獲勝的概率為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面αβ,在平面α內(nèi)任取一條直線a,在β內(nèi)總存在直線ba,則αβ的位置關(guān)系是____(填“平行”或“相交”).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某次戰(zhàn)役中,狙擊手A受命射擊敵機,若要擊落敵機,需命中機首2次或命中機中3次或命中機尾1次,已知A每次射擊,命中機首、機中、機尾的概率分別為0.2、0.4、0.1,未命中敵機的概率為0.3,且各次射擊相互獨立。若A至多射擊兩次,則他能擊落敵機的概率為( )

A. 0.23 B. 0.2 C. 0.16 D. 0.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2015高考四川,文21】已知函數(shù)f(x)-2lnx+x2-2ax+a2,其中a>0.

()設(shè)g(x)為f(x)的導(dǎo)函數(shù),討論g(x)的單調(diào)性;

()證明:存在a(0,1),使得f(x)0恒成立,且f(x)=0在區(qū)間(1,+)內(nèi)有唯一解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知6只小白鼠有1只被病毒感染,需要通過對其化驗病毒來確定是否感染.下面是兩種化驗方案:方案甲:逐個化驗,直到能確定感染為止.方案乙:將6只分為兩組,每組三個,并將它們混合在一起化驗,若存在病毒,則表明感染在這三只當(dāng)中,然后逐個化驗,直到確定感染為止;若結(jié)果不含病毒,則在另外一組中逐個進行化驗.

(1)求依據(jù)方案乙所需化驗恰好為2次的概率.

(2)首次化驗化驗費為10元,第二次化驗化驗費為8元,第三次及其以后每次化驗費都是6元,列出方案甲所需化驗費用的分布列,并估計用方案甲平均需要體驗費多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】大西洋鮭魚每年都要逆流而上,游回產(chǎn)地產(chǎn)卵.記鮭魚的游速為,鮭魚的耗氧量的單位數(shù)為,研究中發(fā)現(xiàn)成正比,且當(dāng)時,

1)求出關(guān)于的函數(shù)解析式;

2)計算一條鮭魚的游速是時耗氧量的單位數(shù);

3)當(dāng)鮭魚的游速增加時,其耗氧量是原來的幾倍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面是直角梯形,,,,側(cè)面底面,是以為底的等腰三角形.

)證明:

)若四棱錐的體積等于.問:是否存在過點的平面分別交于點,使得平面平面?若存在,求出的面積;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列5個命題中正確命題的個數(shù)是( )

①對于命題p:x∈R,使得x2+x+1<0,則綈p:x∈R,均有x2+x+1>0;

②m=3是直線(m+3)x+my-2=0與直線mx-6y+5=0互相垂直的充要條件;

③已知回歸直線的斜率的估計值為1.23,樣本點的中心為(4,5),則線性回歸方程為=1.23x+0.08;

④若實數(shù)x,y∈[-1,1],則滿足x2+y2≥1的概率為

⑤曲線y=x2與y=x所圍成圖形的面積是S= (x-x2)dx.

A.2 B.3 C.4 D.5

查看答案和解析>>

同步練習(xí)冊答案