【題目】已知集合(,且),若存在非空集合,使得,且,并任意,都有,則稱集合S具有性質P,稱為集合S的P子集.
(1)當時,試說明集合S具有性質P,并寫出相應的P子集;
(2)若集合S具有性質P,集合T是集合S的一個P子集,設,求證:任意,,都有;
(3)求證:對任意正整數(shù),集合S具有性質P.
【答案】(1);(2)見解析;(3)見解析
【解析】
(1)根據(jù)新定義,即可求出的P子集;(2)分類討論,根據(jù)定義即可證明,(3)利用數(shù)學歸納法證明即可.
(1)當時,,
令,
則,且對都有
所以S具有性質P,相應的P子集為,
(2)1.若,由已知,
所以;
2.若,可設
此時
所以且
所以;
3.若,
則
所以
又因為,
所以
所以
所以
綜上所述:任意,,都有
(3)由(1)可知當時,命題成立,即集合S具有性質P
假設時,命題成立
即且
都有
那么當時,記
并構造如下個集合,,
顯然
又因為,
所以
下面證明中任意兩個元素之差不等于中的任意一個元素
1.若兩個元素
則
所以
2.若兩個元素都屬于
由第二問可知,中任意兩個元素之差不等于中的任意元素
從而時命題成立
綜上所述:對任意正整數(shù),集合S具有性質P.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,,,動點滿足:直線與直線的斜率之積恒為,記動點的軌跡為曲線.
(1)求曲線的方程;
(2)若點位于第一象限,過點,分別作直線,直線,直線,交于點.
①若點的橫坐標為-1,求點的坐標;
②直線與曲線交于點,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在的表格填上數(shù)字,設在第i行第j列所組成的數(shù)字為,,,則表格中共有5個1的填表方法種數(shù)為______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于函數(shù),如果存在實數(shù)(,且不同時成立),使得對恒成立,則稱函數(shù)為“映像函數(shù)”.
(1)判斷函數(shù)是否是“映像函數(shù)”,如果是,請求出相應的的值,若不是,請說明理由;
(2)已知函數(shù)是定義在上的“映像函數(shù)”,且當時,.求函數(shù)()的反函數(shù);
(3)在(2)的條件下,試構造一個數(shù)列,使得當時,,并求時,函數(shù)的解析式,及的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),給出下列四個判斷:
(1)的值域是;
(2)的圖像是軸對稱圖形;
(3)的圖像是中心對稱圖形;
(4)方程有解.
其中正確的判斷有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地政府為了幫助當?shù)剞r(nóng)民脫貧致富,開發(fā)了一種新型水果類食品,該食品生產(chǎn)成本為每件8元.當天生產(chǎn)當天銷售時,銷售價為每件12元,當天未賣出的則只能賣給水果罐頭廠,每件只能賣5元.每天的銷售量與當天的氣溫有關,根據(jù)市場調查,若氣溫不低于,則銷售5000件;若氣溫位于,則銷售3500件;若氣溫低于,則銷售2000件.為制定今年8月份的生產(chǎn)計劃,統(tǒng)計了前三年8月份的氣溫范圍數(shù)據(jù),得到下面的頻數(shù)分布表:
氣溫范圍 (單位:) | |||||
天數(shù) | 4 | 14 | 36 | 21 | 15 |
以氣溫范圍位于各區(qū)間的頻率代替氣溫范圍位于該區(qū)間的概率.
(1)求今年8月份這種食品一天銷售量(單位:件)的分布列和數(shù)學期望值;
(2)設8月份一天銷售這種食品的利潤為(單位:元),當8月份這種食品一天生產(chǎn)量(單位:件)為多少時,的數(shù)學期望值最大,最大值為多少
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于在某個區(qū)間上有意義的函數(shù),如果存在一次函數(shù)使得對于任意的,有恒成立,則稱函數(shù)是函數(shù)的一個弱漸近函數(shù).
(1)若函數(shù)是函數(shù)在區(qū)間上的一個弱漸近函數(shù),求實數(shù)的取值范圍;
(2)證明:函數(shù)是函數(shù)在區(qū)間上的弱漸近函數(shù);
(3)試問:函數(shù)與函數(shù)(其中為自然對數(shù)的底數(shù))在區(qū)間上是否存在相同的弱漸近函數(shù)?如果存在,請求出對應的弱漸近函數(shù)應滿足的條件;如不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),若存在實數(shù),使得對于定義域內的任意實數(shù),均有成立,則稱函數(shù)為“可平衡”函數(shù),有序數(shù)對稱為函數(shù)的“平衡”數(shù)對.
(1)若,判斷是否為“可平衡”函數(shù),并說明理由;
(2)若,,當變化時,求證:與的“平衡”數(shù)對相同;
(3)若,且、均為函數(shù)的“平衡”數(shù)對.當時,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com