設(shè)函數(shù)f(x)的定義域?yàn)镈,若存在非零實(shí)數(shù),使得對(duì)于任意x∈M(M⊆D),有x+l∈D,f(x+l)≥f(x),則稱(chēng)f(x)為M上的l高調(diào)函數(shù),現(xiàn)給出下列命題:
①函數(shù)數(shù)學(xué)公式為R上的1高調(diào)函數(shù);
②函數(shù)f (x)=sin 2x為R上的高調(diào)函數(shù);
③如果定義域是[-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上的m高調(diào)函數(shù),那么實(shí)數(shù)m的取值范圍是[2,+∞);
④如果定義域?yàn)镽的函教f (x)是奇函數(shù),當(dāng)x≥0時(shí),f(x)=|x-a2|-a2,且f(x)為R上的4高調(diào)函數(shù),那么實(shí)數(shù)a的取值范圍是[一1,1].
其中正確的命題是________ (寫(xiě)出所有正確命題的序號(hào)).

②③④
分析:①函數(shù)為R上的遞減函數(shù);
②由正弦函數(shù)知函數(shù)f(x)=sin2x為R上的π高調(diào)函數(shù);
③易知f(-1)=f(1),故得m≥1-(-1),即m≥2;
④定義域?yàn)镽的函數(shù)f(x)是奇函數(shù),當(dāng)x≥0時(shí),f(x)=|x-a2|-a2,畫(huà)出函數(shù)圖象,可得4≥3a2-(-a2),
從而可得結(jié)論
解答:對(duì)于①,∵函數(shù)為R上的遞減函數(shù),故①不正確,
②∵sin2(x+π)≥sin2x,∴函數(shù)f(x)=sin2x為R上的π高調(diào)函數(shù),故②正確,
③如果定義域?yàn)閇1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上m高調(diào)函數(shù),∵f(-1)=f(1),∴m≥1-(-1),∴m≥2,故③正確,
④f(x)=|x-a2|-a2的圖象如圖,∴4≥3a2-(-a2),∴-1≤a≤1,故④正確.
故答案為:②③④
點(diǎn)評(píng):本題考查基本初等函數(shù)的性質(zhì),考查學(xué)生的閱讀能力,應(yīng)用知識(shí)分析解決問(wèn)題的能力,考查數(shù)形結(jié)合的能力,是一個(gè)新定義問(wèn)題,注意對(duì)于條件中所給的一個(gè)新的概念,要注意理解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)的定義在R上的偶函數(shù),且是以4為周期的周期函數(shù),當(dāng)x∈[0,2]時(shí),f(x)=2x-cosx,則a=f(-
3
2
)與b=f(
15
2
)的大小關(guān)系為
a>b
a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)的定義域?yàn)镈,若對(duì)于任意x1,x2∈D,當(dāng)x1<x2時(shí),都有f(x1)≤f(x2),則稱(chēng)函數(shù)f(x)在D上為非減函數(shù).設(shè)函數(shù)f(x)為定義在[0,1]上的非減函數(shù),且滿(mǎn)足以下三個(gè)條件:①f(0)=0;②f(1-x)+f(x)=1,x∈[0,1]; ③當(dāng)x∈[0,
1
4
]
時(shí),f(x)≥2x恒成立.則f(
3
7
)+f(
5
9
)
=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

設(shè)函數(shù)f(x)的定義在R上的偶函數(shù),且是以4為周期的周期函數(shù),當(dāng)x∈[0,2]時(shí),f(x)=2x-cosx,則a=f(-數(shù)學(xué)公式)與b=f(數(shù)學(xué)公式)的大小關(guān)系為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年安徽省蚌埠二中高三(上)12月月考數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

設(shè)函數(shù)f(x)的定義在R上的偶函數(shù),且是以4為周期的周期函數(shù),當(dāng)x∈[0,2]時(shí),f(x)=2x-cosx,則a=f(-)與b=f()的大小關(guān)系為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:山東省月考題 題型:填空題

設(shè)函數(shù)f(x)的定義在R上的偶函數(shù),且是以4為周期的周期函數(shù),當(dāng)x∈[0,2]時(shí),f(x)=2x﹣cosx,則a=f(﹣)與b=f()的大小關(guān)系為(    ).

查看答案和解析>>

同步練習(xí)冊(cè)答案