【題目】某生產(chǎn)廠家生產(chǎn)一種產(chǎn)品的固定成本為4萬元,并且每生產(chǎn)1百臺產(chǎn)品需增加投入0.8萬元.已知銷售收入(萬元)滿足(其中是該產(chǎn)品的月產(chǎn)量,單位:百臺),假定生產(chǎn)的產(chǎn)品都能賣掉,請完成下列問題:

(1)將利潤表示為月產(chǎn)量的函數(shù);

(2)當(dāng)月產(chǎn)量為何值時,公司所獲利潤最大?最大利潤為多少萬元?

【答案】(1);(2)當(dāng)月產(chǎn)量為8百臺時,公司所獲利潤最大,最大利潤為萬元.

【解析】

(1) 由題可得成本函數(shù)Gx)=4+,通過fx)=Rx)-Gx)得到解析式;

(2) 當(dāng)x>10時,當(dāng)0≤x≤10時,分別求解函數(shù)的最大值即可.

(1)由條件知成本函數(shù)Gx)=4+

可得

(2)當(dāng)時,

當(dāng)時,的最大值為萬元;

當(dāng)時,萬元,

綜上所述,當(dāng)月產(chǎn)量為8百臺時,公司所獲利潤最大,最大利潤為萬元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的首項a1=1,且滿足a2n+1=2a2n1與a2n=a2n1+1,則S20=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,已知,,,為線段上的一點,且,則的最小值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】, ,的內(nèi)心,,其中,動點的軌跡所覆蓋的面積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間和極值;

(2)若對于任意,都有成立,求實數(shù)的取值范圍;

(3)若,且,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將5名報名參加運動會的同學(xué)分別安排到跳繩、接力,投籃三項比賽中(假設(shè)這些比賽都不設(shè)人數(shù)上限),每人只參加一項,則共有種不同的方案;若每項比賽至少要安排一人時,則共有種不同的方案,其中的值為( )

A. 543 B. 425 C. 393 D. 275

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】質(zhì)檢部門對某工廠甲、乙兩個車間生產(chǎn)的個零件質(zhì)量進(jìn)行檢測.甲、乙兩個車間的零件質(zhì)量(單位:克)分布的莖葉圖如圖所示.零件質(zhì)量不超過克的為合格.

(1)質(zhì)檢部門從甲車間個零件中隨機抽取件進(jìn)行檢測,若至少件合格,檢測即可通過,若至少件合格,檢測即為良好,求甲車間在這次檢測通過的條件下,獲得檢測良好的概率;

(2)若從甲、乙兩車間個零件中隨機抽取個零件,用表示乙車間的零件個數(shù),求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,曲線處的切線方程為

(Ⅰ)求的解析式;

(Ⅱ)若對,恒有成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax﹣lnx,g(x)=ex﹣ax,其中a為正實數(shù),若f(x)在(1,+∞)上無最小值,且g(x)在(1,+∞)上是單調(diào)遞增函數(shù),則實數(shù)a的取值范圍為

查看答案和解析>>

同步練習(xí)冊答案