【題目】對(duì)甲、乙兩名自行車(chē)賽手在相同條件下進(jìn)行了6次測(cè)試,測(cè)得他們的最大速度(單位:m/s)的數(shù)據(jù)如下:

(1)畫(huà)出莖葉圖

(2)分別求出甲、乙兩名自行車(chē)賽手最大速度(m/s)數(shù)據(jù)的平均數(shù)、極差、方差,并判斷選誰(shuí)參加比賽比較合適?

【答案】(1)見(jiàn)解析(2) 見(jiàn)解析

【解析】試題分析:由已知條件畫(huà)出莖葉圖,從莖葉圖上看,甲乙二人 得分情況是分布均勻的,乙發(fā)揮比較穩(wěn)定,總體情況比甲好。

由題設(shè)條件能求出甲乙兩名自行車(chē)賽手最大速度數(shù)據(jù)的平均數(shù),極差,方差,選乙參加比賽比較合適。

解析:(1)畫(huà)莖葉圖、中間數(shù)為數(shù)據(jù)的十位數(shù).

從莖葉圖上看,甲、乙的得分情況都是分布均勻的,只是乙更好一些.乙發(fā)揮比較穩(wěn)定,總體情況比甲好.

(2)=33.

=33.

s [(27-33)2+(38-33)2+(30-33)2+(37-33)2+(35-33)2+(31-33)2]≈15.67.

s [(33-33)2+(29-33)2+(38-33)2+(34-33)2+(28-33)2+(36-33)2]≈12.67.

甲的極差為11,乙的極差為10.

綜合比較以上數(shù)據(jù)可知,

選乙參加比賽較合適.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題p:x2+mx+1=0有兩個(gè)不等的負(fù)根;命題q:4x2+4(m﹣2)x+1=0無(wú)實(shí)根.若命題p與命題q有且只有一個(gè)為真,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知0<α<π,tanα=﹣2.
(1)求sin(α+ )的值;
(2)求 的值;
(3)2sin2α﹣sinαcosα+cos2α

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=Asin(wx+φ)(x∈R,w>0,0<φ< )的部分圖象如圖所示.

(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)g(x)=f(x﹣ )﹣f(x+ )的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,圓

1)若圓軸相切,求圓的方程;

2)求圓心的軌跡方程;

3)已知,圓軸相交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)).過(guò)點(diǎn)任作一條直線(xiàn)與圓 相交于兩點(diǎn)問(wèn):是否存在實(shí)數(shù),使得?若存在,求出實(shí)數(shù)的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程為為參數(shù)),在以原點(diǎn)為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,直線(xiàn)的極坐標(biāo)方程為

1)求曲線(xiàn)的普通方程和直線(xiàn)的傾斜角;

2)設(shè)點(diǎn),直線(xiàn)和曲線(xiàn)交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,,,平面平面分別是的中點(diǎn).

求證:(I)底面

(II)平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)是拋物線(xiàn)的焦點(diǎn), 若點(diǎn),

1)求的值;

2)若直線(xiàn)經(jīng)過(guò)點(diǎn)且與交于(異于)兩點(diǎn), 證明: 直線(xiàn)與直線(xiàn)的斜率之積為常數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正四棱錐中, , , 分別為 的中點(diǎn).

(Ⅰ)求證: 平面

(Ⅱ)求異面直線(xiàn)所成角的余弦值;

(Ⅲ)若平面與棱交于點(diǎn),求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案