【題目】已知是雙曲線的左右焦點,以為直徑的圓與雙曲線的一條漸近線交于點,與雙曲線交于點,且均在第一象限,當直線時,雙曲線的離心率為,若函數(shù),則()

A. 1 B. C. 2 D.

【答案】C

【解析】雙曲線的,雙曲線的漸近線方程為與圓聯(lián)立,解得與雙曲線方程聯(lián)立,解得,即為,直線與直線平行時,既有,即既有, , ,故選C.

【方法點晴】本題主要考查利用雙曲線的簡單性質求雙曲線的離心率、雙曲線的漸近線,屬于難題. 求解與雙曲線性質有關的問題時要結合圖形進行分析,既使不畫出圖形,思考時也要聯(lián)想到圖形,當涉及頂點、焦點、實軸、虛軸、漸近線等雙曲線的基本量時,要理清它們之間的關系,挖掘出它們之間的內在聯(lián)系.求與離心率有關的問題,應先將 用有關的一些量表示出來,再利用其中的一些關系構造出關于e的等式.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】選修4一5:不等式選講.

已知函數(shù).

(1)求的解集;

(2)設函數(shù),若對任意的都成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本題滿分12分)已知橢圓C的離心率為是橢圓的兩個焦點, 是橢圓上任意一點,且的周長是

1)求橢圓C的方程;

2)設圓T,過橢圓的上頂點作圓T的兩條切線交橢圓于E、F兩點,當圓心在軸上移動且時,求EF的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中是自然對數(shù)的底數(shù).

1)證明:當時, ;

2)設為整數(shù),函數(shù)有兩個零點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正四棱錐中,已知異面直線所成的角為,給出下面三個命題:

:若,則此四棱錐的側面積為;

:若分別為的中點,則平面;

:若都在球的表面上,則球的表面積是四邊形面積的倍.

在下列命題中,為真命題的是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓錐曲線 為參數(shù))和定點 , 是此圓錐曲線的左、右焦點.

(1)以原點為極點,以軸的正半軸為極軸建立極坐標系,求直線的極坐標方程;

(2)經(jīng)過且與直線垂直的直線交此圓錐曲線, 兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)是定義在[1,1]上的奇函數(shù),[0,1]f(x)2xln(x1)1.

(1)求函數(shù)f(x)的解析式;并判斷f(x)[1,1]上的單調性(不要求證明);

(2)解不等式f(2x1)f(1x2)0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖①所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD為∠ACB的平分線,點E在線段AC上,CE=4,將△BCD沿CD折起,使得平面BCD⊥平面ACD,連接AB,BE,如圖②所示,設點FAB的中點.

(1)求證:DE⊥平面BCD;

(2)若EF∥平面BDG,其中GAC上一點,求三棱錐BDEG的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某單位200名職工的年齡分布情況如圖,現(xiàn)要從中抽取40名職工作樣本.用系統(tǒng)抽樣法,將全體職工隨機按1~200編號,并按編號順序平均分為40組(1~5號,6~10號,…,196~200號).若第5組抽出的號碼為22,則第8組抽出的號碼應是________.若用分層抽樣法,則40歲的以下的年齡段應抽取__________人.

查看答案和解析>>

同步練習冊答案