【題目】(本小題滿分13分,(Ⅰ)小問5分,(Ⅱ)小問8分.)
甲、乙、丙三人按下面的規(guī)則進行乒乓球比賽:第一局由甲、乙參加而丙輪空,以后每一局由前一局的獲勝者與輪空者進行比賽,而前一局的失敗者輪空.比賽按這種規(guī)則一直進行到其中一人連勝兩局或打滿6局時停止.設在每局中參賽者勝負的概率均為,且各局勝負相互獨立.求:(Ⅰ)打滿3局比賽還未停止的概率;(Ⅱ)比賽停止時已打局數(shù)的分別列與期望E.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:()的左頂點為A,離心率為,點在橢圓C上.
(1)求橢圓C的方程;
(2)若直線()與橢圓C交于E,F兩點,直線,分別與y軸交于點M,N,求證:在x軸上存在點P,使得無論非零實數(shù)k怎樣變化,以為直徑的圓都必過點P,并求出點P的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A.若等比數(shù)列的前項和為,則,,也成等比數(shù)列.
B.命題“若為的極值點,則”的逆命題是真命題.
C.“為真命題”是“為真命題”的充分不必要條件.
D.命題“,使得”的否定是:“,”.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓經(jīng)過兩點,為坐標原點.
(1)求橢圓的標準方程;
(2)設動直線與橢圓有且僅有一個公共點,且與圓相交于兩點,試問直線與的斜率之積是否為定值?若是,求出該定值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中央政府為了對應因人口老齡化而造成的勞動力短缺等問題,擬定出臺“延遲退休年齡政策”,為了了解人們對“延遲退休年齡政策”的態(tài)度,責成人社部進行調(diào)研,人社部從網(wǎng)上年齡在15~65的人群中隨機調(diào)查50人,調(diào)查數(shù)據(jù)的頻率分布直方圖和支持“延遲退休”的人數(shù)與年齡的統(tǒng)計結(jié)果如下:
(1)由以上統(tǒng)計數(shù)據(jù)填下面2×2列聯(lián)表,并問是否有90%的把握認為以45歲為分界點對“延遲退休年齡政策”的支持度有差異:
(2)若從年齡在的被調(diào)查人中隨機選取兩人進行調(diào)查,求選中的2人中恰有1人支持“延遲退休”的概率.
參考數(shù)據(jù):
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學德育處為了解全校學生的上網(wǎng)情況,在全校隨機抽取了40名學生(其中男、女生人數(shù)各占一半)進行問卷調(diào)查,并進行了統(tǒng)計,按男、女分為兩組,再將每組學生的月上網(wǎng)次數(shù)分為5組:,得到如圖所示的頻率分布直方圖.
(1)寫出女生組頻率分布直方圖中的值;
(2)求抽取的40名學生中月上網(wǎng)次數(shù)不少于15的學生人數(shù);
(3)在抽取的40名學生中從月上網(wǎng)次數(shù)不少于20的學生中隨機抽取3人,并用表示隨機抽取的3人中男生的人數(shù),求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在四棱柱ABCD﹣A1B1C1D1中,∠BAD=∠BCD=90°,∠ADC=60°且AD=CD,BB1⊥平面ABCD,BB1=2AB=2.
(1)證明:AC⊥B1D.
(2)求BC1與平面B1C1D所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司為了對某種商品進行合理定價,需了解該商品的月銷售量(單位:萬件)與月銷售單價(單位:元/件)之間的關系,對近個月的月銷售量和月銷售單價數(shù)據(jù)進行了統(tǒng)計分析,得到一組檢測數(shù)據(jù)如表所示:
月銷售單價(元/件) | ||||||
月銷售量(萬件) |
(1)若用線性回歸模型擬合與之間的關系,現(xiàn)有甲、乙、丙三位實習員工求得回歸直線方程分別為:,和,其中有且僅有一位實習員工的計算結(jié)果是正確的.請結(jié)合統(tǒng)計學的相關知識,判斷哪位實習員工的計算結(jié)果是正確的,并說明理由;
(2)若用模型擬合與之間的關系,可得回歸方程為,經(jīng)計算該模型和(1)中正確的線性回歸模型的相關指數(shù)分別為和,請用說明哪個回歸模型的擬合效果更好;
(3)已知該商品的月銷售額為(單位:萬元),利用(2)中的結(jié)果回答問題:當月銷售單價為何值時,商品的月銷售額預報值最大?(精確到)
參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù),過點作軸的垂線交函數(shù)圖象于點,以為切點作函數(shù)圖象的切線交軸于點,再過作軸的垂線交函數(shù)圖象于點,,以此類推得點,記的橫坐標為,.
(1)證明數(shù)列為等比數(shù)列并求出通項公式;
(2)設直線與函數(shù)的圖象相交于點,記(其中為坐標原點),求數(shù)列的前項和.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com